精英家教网 > 高中数学 > 题目详情
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.                    
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
(1)平行; (2); (3)存在AP:AC=1:3

试题分析:(1)由于E、F分别是AC和BC边的中点,所以在翻折后的三角形ABC中,.由线面平行的判定定理可得结论.
(2)由棱锥E-DFC的体积为,因为△ABC沿CD翻折成直二面角A-DC-B,并且平面BCD,即由三棱锥的体积公式,即可求出结论.
(3)在线段AC上是否存在一点P,使BP⊥DF,即转化为直线与平面垂直的问题,假设存在点P作,k为垂足,连结BK即可得到直线DF 平面BPK,所以可得.通过三角形的相似即可得到所求的结论.
(1)AB//平面DEF,
如图.在△ABC中,∵E,F分别是AC,BC的中点,故EF//AB,
又AB平面DEF,∴AB//平面DEF,   4分
(2)∵AD⊥CD,BD⊥CD, 将△ABC沿CD翻折成直二面角A-DC-B
∴AD⊥BD,AD⊥平面BCD,取CD中点M,则EM//AD,∴EM⊥平面BCD,且EM=a/2
,a="2."   8分
(3)存在满足条件的点P.
做法:因为三角形BDF为正三角形,过B做BK⊥DF,延长BK交DC于K,过K做KP//DA,交AC于P.则点P即为所求.
证明:∵AD⊥平面BCD , KP//DA,∴PK⊥平面BCD,PK⊥DF,又 BK⊥DF,PK∩BK=K,∴DF⊥平面PKB,DF⊥PB.又∠DBK=∠KBC=∠BCK=30°,∴DK=KF=KC/2.
故AP:OC=1:2,AP:AC=1:3    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥中,平面.

(1)求证:平面
(2)若中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面
的中点,.
(1)求证:平面
(2)求证:平面平面
(3)求此多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

几何体的三视图如图所示,则这个几何体的直观图可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2014·荆州模拟)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12cm,深2cm的空穴,则该球的半径是________cm,表面积是________cm2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆柱M的底面直径与高均等于球O的直径,则圆柱M与球O的体积之比  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为          .

查看答案和解析>>

同步练习册答案