精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,求目标函数z=x-2y的最小值为-4.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A时,
直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3).
代入目标函数z=x-2y,
得z=2-2×3=2-6=-4
∴目标函数z=x-2y的最小值是-4.
故答案为:-4.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,一个箱子的每个面都是矩形且边长都是正整数,若它的对角线PQ=9,则这个箱子的体积最大可能值是112.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b是非零实数,若a<b,则下列不等式成立的是(  )
A.a2<b2B.ab2<a2bC.$\frac{1}{a{b}^{2}}$<$\frac{1}{{a}^{2}b}$D.$\frac{1}{a}$>$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}满足 $\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{{2}^{n-1}}{{a}_{n}}$=$\frac{{2}^{n}λ}{{a}_{n}}$-1,其中常数λ>$\frac{1}{2}$,
(1)求数列{an}的通项公式;
(2)若λ=$\frac{2}{3}$,bn=(2n-4001)an,当n为何值时,bn最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>b,则下列不等式一定能成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a3>b3C.$\frac{1}{a-b}$>$\frac{1}{a+b}$D.a4>b4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知小矩形蓄水池ABCD中,AB=3米,AD=2米,现要将小矩形蓄水池扩建为大矩形蓄水池AEPF,使点B在AE上,点D在AF上,且对角线EF过点C.
(1)分别求矩形AEPF的面积和周长的最小值及对应AE的长;
(2)求|CF|•|CE|的最小值及此时AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥的三视图如图所示,其中侧视图是边长为$\sqrt{3}$的正三角形,则该几何体的外接球的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列各式的值.
(1)$\root{4}{81×\sqrt{{9}^{\frac{2}{3}}}}$;
(2)($\root{3}{25}$-$\sqrt{125}$)÷$\root{4}{5}$;
(3)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(1-2x)5 (1+3x)4展开式中按x的升幂排列的第三项的系数是(  )
A.-23B.-24C.-25D.-26

查看答案和解析>>

同步练习册答案