精英家教网 > 高中数学 > 题目详情
6.已知递增等差数列{an}满足:a1=2,a1,a2,a3成等比数列
(Ⅰ)求{an}通项公式
(Ⅱ)若数列{bn}满足bn+1-bn=an+2,且b1=2,设数列{$\frac{1}{{b}_{n}}$}的前n项和Tn,求证:Tn<1.

分析 (I)设递增等差数列{an}的公差为d>0,由a1=2,a1,a2,a4成等比数列,可得$\left\{\begin{array}{l}{{a}_{1}=2}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+3d)}\end{array}\right.$,解得即可.
(II)bn+1-bn=an+2=2(n+1),且b1=2,利用“累加求和”可得bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1,再利用“裂项求和”即可得出.

解答 (I)解:设递增等差数列{an}的公差为d>0,
∵a1=2,a1,a2,a4成等比数列,
∴$\left\{\begin{array}{l}{{a}_{1}=2}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+3d)}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$,
∴an=2+2(n-1)=2n.
(II)证明:∵bn+1-bn=an+2=2(n+1),且b1=2,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n+2(n-1)+…+2×2+2=$2×\frac{n(n+1)}{2}$=n(n+1),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴前n项和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.
∴Tn<1.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“累加求和”、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.由计算机产生的两个0到1上的随机数,按右侧流程图所示的规则,则能输出数对(x,y)的概率是1-cos1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上小止方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.16B.20C.4$\sqrt{29}$D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{lnx}$-ax(a>0,a≠1)
(1)若函数f(x)在[e,e2]上为单调增函数,求实数a的取值范围;
(2)若?x1,x2∈[e,e2],使f(x1)≤f'(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在直角坐标平面xoy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为$\frac{3}{4}$,则抛物线C的方程为(  )
A.x2=$\frac{1}{2}$yB.x2=yC.x2=2yD.x2=4y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R+,且x+y=2
(Ⅰ)要使不等式$\frac{1}{x}$+$\frac{1}{y}$≥|a+2|-|a-1|恒成立,求实数a的取值范围
(Ⅱ)求证:x2+2y2$≥\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直角三角形ABC中,A为直角,AB=13,AC=3,P、Q为△ABC所在平面内的点,满足$\overrightarrow{AB}$=-2$\overrightarrow{AC}$+3$\overrightarrow{AP}$,$\overrightarrow{CA}$+$\overrightarrow{CB}$=2$\overrightarrow{CQ}$,则$\overrightarrow{AP}$在$\overrightarrow{CQ}$方向上的投影为$\frac{133\sqrt{205}}{615}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且满足:a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)设Tn=2Sn-7n,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x+1≥5},B={y|y=x2+2x+5,x∈R},则A、B表示(表示/不表示)同一集合.

查看答案和解析>>

同步练习册答案