精英家教网 > 高中数学 > 题目详情
1.在直角坐标平面xoy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为$\frac{3}{4}$,则抛物线C的方程为(  )
A.x2=$\frac{1}{2}$yB.x2=yC.x2=2yD.x2=4y

分析 由已知条件推导出点Q到抛物线C的准线的距离为$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3}{4}$,由此能求出抛物线C的方程.

解答 解:抛物线C:x2=2py(p>0)的焦点F(0,$\frac{p}{2}$),
设M(x0,$\frac{{{x}_{0}}^{2}}{2p}$),x0>0,Q(a,b),
由题意知b=$\frac{p}{4}$,
则点Q到抛物线C的准线的距离为b+$\frac{p}{2}$=$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3}{4}$,
解得p=1,
∴抛物线C的方程为x2=2y.
故选:C.

点评 本题考查抛物线的简单性质、直线与抛物线的位置关系,考查数形结合思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分函数图象如图所示,且图象经过点(0,1)和 ($\frac{11π}{12}$,0),则(  )
A.ω=$\frac{10}{11}$,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{12}$C.ω=2,φ=$\frac{π}{6}$D.ω=$\frac{10}{11}$,φ=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),则f(x)在x∈[0,$\frac{π}{2}$]时的值域是[-1,$\sqrt{2}$];又若将函数y=f(x)的图象向左平移a(a>0)个单位长度得到的图象恰好关于点($\frac{π}{4}$,0)对称,则实数a的最小值为$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图阴影部分是由曲线y=x2和圆x2+y2=2及x轴围成的封闭图形,则封闭图形的面积S=$\frac{π}{4}-\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=a+bi(i为虚数单位,a,b∈R)在复平面内对应点为Z(a,b),O为坐标原点,将实轴非负半轴绕点O逆时针旋转到OZ,转过的最小角叫复数z的辐角主值,记作arg(z),则arg($\frac{2}{1-i}$)的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知递增等差数列{an}满足:a1=2,a1,a2,a3成等比数列
(Ⅰ)求{an}通项公式
(Ⅱ)若数列{bn}满足bn+1-bn=an+2,且b1=2,设数列{$\frac{1}{{b}_{n}}$}的前n项和Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义运算“?”,两个实数a,b的“a?b”运算如图所示,若输入a=2cos$\frac{2015π}{3}$b=2,则输出P的值为(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算$\frac{2i}{1-i}$(i为虚数单位)等于(  )
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q(p≠0)对于任意的n∈N*都成立,我们称这个数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,判断数列{an},{bn}是否为“M类数列”,并说明理由;
(2)若数列{an}是“M类数列”,则数列{an+an+1}、{an•an+1}是否一定是“M类数列”,若是的,加以证明;若不是,说明理由;
(3)若数列{an}满足:a1=1,an+an+1=3•2n(n∈N*),设数列{an}的前n项和为Sn,求Sn的表达式,并判断{an}是否是“M类数列”.

查看答案和解析>>

同步练习册答案