11£®¶ÔÓÚ¸ø¶¨ÊýÁÐ{cn}£¬Èç¹û´æÔÚʵ³£Êýp£¬q£¬Ê¹µÃcn+1=pcn+q£¨p¡Ù0£©¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼³ÉÁ¢£¬ÎÒÃdzÆÕâ¸öÊýÁÐ{cn}ÊÇ¡°MÀàÊýÁС±£®
£¨1£©Èôan=2n£¬bn=3•2n£¬n¡ÊN*£¬ÅжÏÊýÁÐ{an}£¬{bn}ÊÇ·ñΪ¡°MÀàÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôÊýÁÐ{an}ÊÇ¡°MÀàÊýÁС±£¬ÔòÊýÁÐ{an+an+1}¡¢{an•an+1}ÊÇ·ñÒ»¶¨ÊÇ¡°MÀàÊýÁС±£¬ÈôÊǵ쬼ÓÒÔÖ¤Ã÷£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÊýÁÐ{an}Âú×㣺a1=1£¬an+an+1=3•2n£¨n¡ÊN*£©£¬ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóSnµÄ±í´ïʽ£¬²¢ÅжÏ{an}ÊÇ·ñÊÇ¡°MÀàÊýÁС±£®

·ÖÎö £¨1£©ÔËÓà MÀàÊýÁж¨ÒåÅжϣ¬
£¨2£©{an}ÊÇ¡°MÀàÊýÁС±£¬µÃ³öan+1=pan+q£¬an+2=pan+1+q£¬Çó½âan+1+an+2£¬an+1an+2µÄʽ×Ó£¬½áºÏ¶¨ÒåÅжϼ´¿É
£¨3£©ÕûÌåÔËÓÃan+an+1=3.2n£¨n¡ÊN*£©£¬·ÖÀàµÃ³ö£ºµ±nΪżÊýʱ£¬Sn=3£¨2+23+¡­+2n-1£©=2n+1-2£¬nÎªÆæÊýʱ£¬Sn=1+3£¨22+24+¡­+2n-1£©=2n+1-3£¬»¯¼ò¼´¿ÉµÃ³öSn£¬ÔÙÔËÓ÷´Ö¤·¨Ö¤Ã÷¼´¿É£®

½â´ð ½â£º£¨1£©ÒòΪan+1=an+2£¬p=1£¬q=2ÊÇ¡°MÀàÊýÁС±£¬
bn+1=2bn£¬p=2£¬q=0ÊÇ¡°MÀàÊýÁС±£®
£¨2£©ÒòΪ{an}ÊÇ¡°MÀàÊýÁС±£¬ËùÒÔan+1=pan+q£¬an+2=pan+1+q£¬
ËùÒÔan+1+an+2=p£¨an+1+an+2£©+2q£¬Òò´Ë£¬{an+an+1}ÊÇ¡°MÀàÊýÁС±£®
ÒòΪ{an}ÊÇ¡°MÀàÊýÁС±£¬ËùÒÔan+1=pan+q£¬an+2=pan+1+q£¬
ËùÒÔan+1an+2=p2£¨anan+1£©+pq£¨an+an+1£©+q2£¬
µ±q=0ʱ£¬ÊÇ¡°MÀàÊýÁС±£»
µ±q¡Ù0ʱ£¬²»ÊÇ¡°MÀàÊýÁС±£»
£¨3£©µ±nΪżÊýʱ£¬Sn=3£¨2+23+¡­+2n-1£©=2n+1-2£¬
µ±nÎªÆæÊýʱ£¬Sn=1+3£¨22+24+¡­+2n-1£©=2n+1-3£¬
ËùÒÔSn=$\left\{\begin{array}{l}{{2}^{n+1}-2£¬£¨n=2k£¬k¡ÊZ£©}\\{{2}^{n+1}-3£¬£¨n=2k-1£¬k¡ÊZ£©}\end{array}\right.$£®
µ±nΪżÊýʱan=Sn-Sn-1=2n+1-2-£¨2n-3£©=2n+1£¬
µ±nÎªÆæÊýʱ£¬an=Sn-Sn-1=2n+1-3-£¨2n-2£©=2n-1£¨n¡Ý3£©£¬
ËùÒÔan=$\left\{\begin{array}{l}{{2}^{n}+1£¬£¨n=2k£¬k¡ÊZ£©}\\{{2}^{n}-1£¬£¨n=2k-1£¬k¡ÊZ£©}\end{array}\right.$
¼ÙÉè{an}ÊÇ¡°MÀàÊýÁС±£¬
µ±nΪżÊýʱ£¬an+1=2n+1-1=pan+q=p£¨2n+1£©+qp=2£¬q=-3£¬
µ±nÎªÆæÊýʱ£¬an+1=2n+1+1=pan+q=p£¨2n-1£©+q£¬
p=2£¬q=3£¬
µÃ³öì¶Ü£¬ËùÒÔ{an}²»ÊÇ¡°MÀàÊýÁС±£®

µãÆÀ ±¾ÌâÌâÒâºÜÐÂÓ±£¬½â¾öÎÊÌâ½ô¿Û¶¨Òå¼´¿É£¬×¢Òâ·ÖÀàÌÖÂÛ£¬ÕûÌåÇó½â£¬ÊôÓÚÄÑÌ⣬ÔËËãÁ¿½Ï´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚÖ±½Ç×ø±êÆ½ÃæxoyÖУ¬FÊÇÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µã£¬MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã£¬¹ýM£¬F£¬OÈýµãµÄÔ²µÄÔ²ÐÄΪQ£¬µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ$\frac{3}{4}$£¬ÔòÅ×ÎïÏßCµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®x2=$\frac{1}{2}$yB£®x2=yC£®x2=2yD£®x2=4y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©=$\frac{2a+2bx+sinx+£¨a+bx£©cosx}{2+cosx}$£¨a£¬b¡ÊR£©ÓÐ×î´óÖµºÍ×îСֵ£¬ÇÒ×î´óÖµÓë×îСֵµÄºÍΪ8£¬Ôò2a-3b=£¨¡¡¡¡£©
A£®7B£®8C£®9D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýy=3sin£¨4x+$\frac{¦Ð}{3}$£©-3µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£¬µ¥µ÷µÝ¼õÇø¼äΪ[$\frac{k¦Ð}{2}$+$\frac{¦Ð}{24}$£¬$\frac{k¦Ð}{2}$+$\frac{7¦Ð}{24}$]£¬k¡Êz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èô¾ØÕó$£¨\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}£©$µÄÔªËØÎªËæ»ú´Ó1¡¢2¡¢4¡¢8ÖÐѡȡµÄ4¸ö²»Í¬ÊýÖµ£¬Ôò¶ÔÓ¦µÄÐÐÁÐʽ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$µÄֵΪÕýÊýµÄ¸ÅÂÊΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¼¯ºÏA={x|x+1¡Ý5}£¬B={y|y=x2+2x+5£¬x¡ÊR}£¬ÔòA¡¢B±íʾ£¨±íʾ/²»±íʾ£©Í¬Ò»¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ä³ÎÛË®´¦Àí³§ÒªÔÚÒ»¸ö¾ØÐÎABCDµÄ³Øµ×ˮƽÆÌÉèÎÛË®¾»»¯¹ÜµÀ£¨Ö±½Ç¡÷EFG£¬EÊÇÖ±½Ç¶¥µã£©À´´¦ÀíÎÛË®£¬¹ÜµÀÔ½³¤£¬ÎÛË®¾»»¯Ð§¹ûÔ½ºÃ£®Éè¼ÆÒªÇó¹ÜµÀµÄ½Ó¿ÚEÊÇABµÄÖе㣬F£¬G·Ö±ðÂäÔÚAD£¬BCÉÏ£¬ÇÒAB=20m£¬AD=10$\sqrt{3}$m£¬Éè¡ÏGEB=¦È£®
£¨1£©ÊÔ½«ÎÛË®¹ÜµÀµÄ³¤¶Èl±íʾ³É¦ÈµÄº¯Êý£¬²¢Ð´³ö¶¨ÒåÓò£»
£¨2£©µ±¹ÜµÀ³¤¶ÈlΪºÎֵʱ£¬ÎÛË®¾»»¯Ð§¹û×îºÃ£¬²¢Çó´Ëʱ¹ÜµÀµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¸´Êý$\frac{4+2i}{-1+2i}$µÄÐ鲿Ϊ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªËæ»ú±äÁ¿XµÄȡֵΪ0£¬1£¬2£¬ÈôP£¨X=0£©=$\frac{1}{5}$£¬EX=1£¬ÔòDX=£¨¡¡¡¡£©
A£®$\frac{2}{5}$B£®$\frac{4}{5}$C£®$\frac{2}{3}$D£®$\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸