精英家教网 > 高中数学 > 题目详情
17.复数$\frac{4+2i}{-1+2i}$的虚部为-2.

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:复数$\frac{4+2i}{-1+2i}$=$\frac{(4+2i)(1+2i)}{-(1-2i)(1+2i)}$=$\frac{10i}{-5}$=-2i的虚部为-2.
故答案为:-2.

点评 本题考查了复数的运算法则、虚部的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.计算$\frac{2i}{1-i}$(i为虚数单位)等于(  )
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q(p≠0)对于任意的n∈N*都成立,我们称这个数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,判断数列{an},{bn}是否为“M类数列”,并说明理由;
(2)若数列{an}是“M类数列”,则数列{an+an+1}、{an•an+1}是否一定是“M类数列”,若是的,加以证明;若不是,说明理由;
(3)若数列{an}满足:a1=1,an+an+1=3•2n(n∈N*),设数列{an}的前n项和为Sn,求Sn的表达式,并判断{an}是否是“M类数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面内一动点 M(x,y)到定点F(0,1)和到定直线y=-1的距离相等,设M的轨迹是曲线C.
(1)求曲线C的方程;
(2)在曲线C上找一点P,使得点P到直线y=x-2的距离最短,求出P点的坐标;
(3)设直线l:y=x+m,问当实数m为何值时,直线l与曲线C有交点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对任意两个非零的平面向量$\overrightarrow a$和$\overrightarrow b$,定义$\overrightarrow a*\overrightarrow b=\frac{\overrightarrow a•\overrightarrow b}{\overrightarrow b•\overrightarrow b}$;若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|{\overrightarrow a}|>|{\overrightarrow b}|>0$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ∈(0,$\frac{π}{4}$),且$\overrightarrow a*\overrightarrow b,\overrightarrow b*\overrightarrow a$都在集合{$\frac{n}{2}$|n∈Z}中,则$\overrightarrow a*\overrightarrow b$=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=f(x)的导函数f′(x)的图象如图所示,则函数f(x)在区间[-3,5]上取得极大值时,x的取值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于函数f(x)=x2(lnx-a)+a,给出以下4个结论:
①?a>0,?x>0,f(x)≥0;
②?a>0,?x>0,f(x)≤0;
③?a>0,?x>0,f(x)≥0;
④?a>0,?x>0,f(x)≤0.
其中正确结论的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2
(1)若k1:k2=4:5,求函数f(x)的单调区间;
(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1-2t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,对?a∈R,?b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为(  )
A.$1+\frac{ln2}{2}$B.$1-\frac{ln2}{2}$C.$2\sqrt{e}-1$D.$\sqrt{e}-1$

查看答案和解析>>

同步练习册答案