精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x)的导函数f′(x)的图象如图所示,则函数f(x)在区间[-3,5]上取得极大值时,x的取值为2.

分析 由导数的图象,判断函数的单调性,然后根据函数极值和导数之间的关系进行求解即可.

解答 解:由图象可知,当-3≤x<-1或2<x<4时,函数单调递增,
当-1<x<2或4<x54时,函数单调递减,
即当x=2时,函数取得极大值,
故答案为:2,

点评 本题主要考查函数极值的判断,根据函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且满足:a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)设Tn=2Sn-7n,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x+1≥5},B={y|y=x2+2x+5,x∈R},则A、B表示(表示/不表示)同一集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若一个函数存在定义域和值域相同的区间,则称这个函数为这个区间上的一个“保城函数”,给出下列四个函数:
①f(x)=-x3
②f(x)=3x
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一个区间使其为保城函数的有(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数$\frac{4+2i}{-1+2i}$的虚部为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“$\frac{{a}^{2}+{b}^{2}}{ab}$≤-2”是“a<0且b>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.?ABCD中,OA=4,OC=2,|$\overrightarrow{OB}$|=2$\sqrt{7}$,M为OA的中点,P为线段BC上一动点(包括端点).
(1)求∠ABC;
(2)是否存在实数λ,使(λ$\overrightarrow{OA}$-$\overrightarrow{OP}$)⊥$\overrightarrow{CM}$?若存在,求出满足条件的实数λ的取值范围,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{b}$|=4,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,若对每一个确定的$\overrightarrow b$,|$\overrightarrow{c}$|的最大值和最小值分别为m,n,则m-n的值为(  )
A.随$|\overrightarrow a|$增大而增大B.随$|\overrightarrow a|$增大而减小C.是2D.是4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图程序框图,若实数a的值为5,则输出k的值为5.

查看答案和解析>>

同步练习册答案