精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,对?a∈R,?b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为(  )
A.$1+\frac{ln2}{2}$B.$1-\frac{ln2}{2}$C.$2\sqrt{e}-1$D.$\sqrt{e}-1$

分析 f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,得到f-1(x)=$\frac{1}{2}$lnx,g-1(x)=${e}^{x-\frac{1}{2}}$,够造函数h(x)=h(x)=g-1(x)-f-1(x),则b-a的最小值,即为h(x)的最小值,利用导数法求出函数的最小值,可得答案.

解答 解:∵f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,
∴f-1(x)=$\frac{1}{2}$lnx,g-1(x)=${e}^{x-\frac{1}{2}}$,
令h(x)=g-1(x)-f-1(x)=${e}^{x-\frac{1}{2}}$-$\frac{1}{2}$lnx,
则b-a的最小值,即为h(x)的最小值,
∵h′(x)=)=${e}^{x-\frac{1}{2}}$-$\frac{1}{2x}$,
令h′(x)=0,解得x=$\frac{1}{2}$,
∵当x∈(0,$\frac{1}{2}$)时,h′(x)<0,当x∈($\frac{1}{2}$,+∞)时,h′(x)>0,
故当x=$\frac{1}{2}$时,h(x)取最小值1-$\frac{ln\frac{1}{2}}{2}$=1+$\frac{ln2}{2}$,
故选:A.

点评 本题考查的知识点是反函数,利用导数法求函数的最值,其中将求b-a的最小值,转化为h(x)的最小值,是解答的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.复数$\frac{4+2i}{-1+2i}$的虚部为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量X的取值为0,1,2,若P(X=0)=$\frac{1}{5}$,EX=1,则DX=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.代数式(1-x)(1+x)5的展开式中x3的系数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列判断不正确的是(  )
A.若ξ-B(4,0.25),则Eξ=1
B.命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样
D.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图程序框图,若实数a的值为5,则输出k的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果复数$\frac{2-bi}{1+2i}$的实部和虚部互为相反数,则实数b=(  )
A.-$\frac{2}{3}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某四天的用电量与当天气温,列表如下:
由表中数据得到回归直线方程$\widehat{y}$=-2x+a.据此预测当气温为-4°C时,用电量为68(单位:度).
气温(x℃)181310-1
用电量(度)24343864

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆的左右两个焦点分别为F1、F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=2,|PF2|=4.
(1)求椭圆C的标准方程;
(2)若直线l过圆x2+y2+4x-2y-4=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线l的方程;
(3)若以椭圆的长轴为直径作圆N,T为该圆N上异于长轴端点的任意点,再过原点O作直线TF2 的垂线交椭圆的右准线交于点Q,试判断直线TQ与圆N的位置关系,并给出证明.

查看答案和解析>>

同步练习册答案