·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨Òå¿ÉµÃ2a=6£¬¼´a=3£¬ÔÙÓɹ´¹É¶¨Àí¿ÉµÃc£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬Éè³öABµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬½â·½³Ì¿ÉµÃk£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³Ì£»
£¨3£©Ö±ÏßTQÓëÔ²NÏàÇУ®ÇóµÃÍÖÔ²µÄÓÒ½¹µãºÍÓÒ×¼Ïߣ¬ÔËÓÃбÂʹ«Ê½£¬´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£º£¨1£©Éè$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¬b£¾0£©£¬ÒòΪµãPÔÚÍÖÔ²CÉÏ£¬
ËùÒÔ2a=|PF1|+|PF2|=6£¬
½âµÃa=3£¬
ÔÚÖ±½Ç¡÷PF1F2ÖУ¬|F1F2|=$\sqrt{|P{F}_{2}{|}^{2}+|P{F}_{1}{|}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$£¬
¹ÊÍÖÔ²µÄ°ë½¹¾àc=$\sqrt{5}$£¬
´Ó¶øb2=a2-c2=9-5=4£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1£®
£¨2£©ÉèA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
ÓÉÔ²µÄ·½³ÌΪ£¨x+2£©2+£¨y-1£©2=9£¬ËùÒÔÔ²ÐÄMµÄ×ø±êΪ£¨-2£¬1£©£¬
´Ó¶ø¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©+1£¬´úÈëÍÖÔ²CµÄ·½³ÌµÃ
£¨5+9k2£©x2+18£¨2k2+k£©x+36£¨k2+k-1£©=0£¬
ÒòΪA£¬B¹ØÓÚµãM¶Ô³Æ£®ËùÒÔ$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{9£¨2{k}^{2}+k£©}{5+9{k}^{2}}$=-2£¬
½âµÃk=$\frac{10}{9}$£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=$\frac{10}{9}$£¨x+2£©+1£¬
¼´10x-9y+29=0£®£¨¾¼ìÑ飬·ûºÏÌâÒ⣩£®
£¨3£©Ö±ÏßTQÓëÔ²NÏàÇУ®Ö¤Ã÷ÈçÏ£ºÒ×µÃÍÖÔ²ÓÒ½¹µãΪF2£¨$\sqrt{5}$£¬0£©£¬ÓÒ×¼ÏßΪx=$\frac{9\sqrt{5}}{5}$£®
ÉèµãT£¨x0£¬y0£©£¬ÔòÓÐx02+y02=9£¬ÓÖ${k}_{T{F}_{2}}$=$\frac{{y}_{0}}{{x}_{0}-\sqrt{5}}$£¬kOQ=-$\frac{{x}_{0}-\sqrt{5}}{{y}_{0}}$£¬
¡àÖ±ÏßOQµÄ·½³ÌΪy=-$\frac{{x}_{0}-\sqrt{5}}{{y}_{0}}$x£¬Áîx=$\frac{9\sqrt{5}}{5}$£¬µÃy=-$\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{2}£©}{5{y}_{0}}$£¬
¼´Q£¨$\frac{9\sqrt{5}}{5}$£¬-$\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{2}£©}{5{y}_{0}}$£©£¬
ËùÒÔkTQ=$\frac{{y}_{0}+\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{5{y}_{0}}}{{x}_{0}-\frac{9\sqrt{5}}{5}}$=$\frac{5{{y}_{0}}^{2}+9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{{y}_{0}£¨5{x}_{0}-9\sqrt{5}£©}$=$\frac{5£¨9-{{x}_{0}}^{2}£©+9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{{y}_{0}£¨5{x}_{0}-9\sqrt{5}£©}$=-$\frac{{x}_{0}}{{y}_{0}}$£¬
ÓÖkOT=$\frac{{y}_{0}}{{x}_{0}}$£¬ÓÚÊÇÓÐkOT•kTQ=-1£¬
¹ÊOT¡ÍTQ£¬¡àÖ±ÏßTQÓëÔ²NÏàÇУ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ¶¨ÒåºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÅжϣ¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $1+\frac{ln2}{2}$ | B£® | $1-\frac{ln2}{2}$ | C£® | $2\sqrt{e}-1$ | D£® | $\sqrt{e}-1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨{1£¬1+\frac{{\sqrt{2}}}{2}}£©$ | B£® | $£¨{1+\frac{{\sqrt{2}}}{2}£¬+¡Þ}£©$ | C£® | $£¨{1£¬1+\sqrt{2}}£©$ | D£® | $£¨{1+\sqrt{2}£¬+¡Þ}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{127}{64}$ | B£® | $\frac{511}{256}$ | C£® | $\frac{1023}{512}$ | D£® | $\frac{511}{512}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com