17£®ÒÑÖªÍÖÔ²µÄ×óÓÒÁ½¸ö½¹µã·Ö±ðΪF1¡¢F2£¬µãPÔÚÍÖÔ²CÉÏ£¬ÇÒPF1¡ÍPF2£¬|PF1|=2£¬|PF2|=4£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïßl¹ýÔ²x2+y2+4x-2y-4=0µÄÔ²ÐÄM½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒA¡¢B¹ØÓÚµãM¶Ô³Æ£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÈôÒÔÍÖÔ²µÄ³¤ÖáΪֱ¾¶×÷Ô²N£¬TΪ¸ÃÔ²NÉÏÒìÓÚ³¤Öá¶ËµãµÄÈÎÒâµã£¬ÔÙ¹ýÔ­µãO×÷Ö±ÏßTF2 µÄ´¹Ïß½»ÍÖÔ²µÄÓÒ×¼Ïß½»ÓÚµãQ£¬ÊÔÅжÏÖ±ÏßTQÓëÔ²NµÄλÖùØÏµ£¬²¢¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨Òå¿ÉµÃ2a=6£¬¼´a=3£¬ÔÙÓɹ´¹É¶¨Àí¿ÉµÃc£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬Éè³öABµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬½â·½³Ì¿ÉµÃk£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³Ì£»
£¨3£©Ö±ÏßTQÓëÔ²NÏàÇУ®ÇóµÃÍÖÔ²µÄÓÒ½¹µãºÍÓÒ×¼Ïߣ¬ÔËÓÃбÂʹ«Ê½£¬´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©Éè$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¬b£¾0£©£¬ÒòΪµãPÔÚÍÖÔ²CÉÏ£¬
ËùÒÔ2a=|PF1|+|PF2|=6£¬
½âµÃa=3£¬
ÔÚÖ±½Ç¡÷PF1F2ÖУ¬|F1F2|=$\sqrt{|P{F}_{2}{|}^{2}+|P{F}_{1}{|}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$£¬
¹ÊÍÖÔ²µÄ°ë½¹¾àc=$\sqrt{5}$£¬
´Ó¶øb2=a2-c2=9-5=4£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1£®
£¨2£©ÉèA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
ÓÉÔ²µÄ·½³ÌΪ£¨x+2£©2+£¨y-1£©2=9£¬ËùÒÔÔ²ÐÄMµÄ×ø±êΪ£¨-2£¬1£©£¬
´Ó¶ø¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©+1£¬´úÈëÍÖÔ²CµÄ·½³ÌµÃ
£¨5+9k2£©x2+18£¨2k2+k£©x+36£¨k2+k-1£©=0£¬
ÒòΪA£¬B¹ØÓÚµãM¶Ô³Æ£®ËùÒÔ$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{9£¨2{k}^{2}+k£©}{5+9{k}^{2}}$=-2£¬
½âµÃk=$\frac{10}{9}$£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=$\frac{10}{9}$£¨x+2£©+1£¬
¼´10x-9y+29=0£®£¨¾­¼ìÑ飬·ûºÏÌâÒ⣩£®
£¨3£©Ö±ÏßTQÓëÔ²NÏàÇУ®Ö¤Ã÷ÈçÏ£ºÒ×µÃÍÖÔ²ÓÒ½¹µãΪF2£¨$\sqrt{5}$£¬0£©£¬ÓÒ×¼ÏßΪx=$\frac{9\sqrt{5}}{5}$£®
ÉèµãT£¨x0£¬y0£©£¬ÔòÓÐx02+y02=9£¬ÓÖ${k}_{T{F}_{2}}$=$\frac{{y}_{0}}{{x}_{0}-\sqrt{5}}$£¬kOQ=-$\frac{{x}_{0}-\sqrt{5}}{{y}_{0}}$£¬
¡àÖ±ÏßOQµÄ·½³ÌΪy=-$\frac{{x}_{0}-\sqrt{5}}{{y}_{0}}$x£¬Áîx=$\frac{9\sqrt{5}}{5}$£¬µÃy=-$\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{2}£©}{5{y}_{0}}$£¬
¼´Q£¨$\frac{9\sqrt{5}}{5}$£¬-$\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{2}£©}{5{y}_{0}}$£©£¬
ËùÒÔkTQ=$\frac{{y}_{0}+\frac{9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{5{y}_{0}}}{{x}_{0}-\frac{9\sqrt{5}}{5}}$=$\frac{5{{y}_{0}}^{2}+9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{{y}_{0}£¨5{x}_{0}-9\sqrt{5}£©}$=$\frac{5£¨9-{{x}_{0}}^{2}£©+9\sqrt{5}£¨{x}_{0}-\sqrt{5}£©}{{y}_{0}£¨5{x}_{0}-9\sqrt{5}£©}$=-$\frac{{x}_{0}}{{y}_{0}}$£¬
ÓÖkOT=$\frac{{y}_{0}}{{x}_{0}}$£¬ÓÚÊÇÓÐkOT•kTQ=-1£¬
¹ÊOT¡ÍTQ£¬¡àÖ±ÏßTQÓëÔ²NÏàÇУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ¶¨ÒåºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÅжϣ¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=e2x£¬g£¨x£©=lnx+$\frac{1}{2}$£¬¶Ô?a¡ÊR£¬?b¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃf£¨a£©=g£¨b£©£¬Ôòb-aµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$1+\frac{ln2}{2}$B£®$1-\frac{ln2}{2}$C£®$2\sqrt{e}-1$D£®$\sqrt{e}-1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®º¯Êýf£¨x£©=Acos£¨¦Øx+¦Õ£©£¨ÆäÖÐA£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÈçͼËùʾ£¬°Ñº¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£®
£¨¢ñ£©Çóº¯Êýy=g£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©Èô$x¡Ê[{\frac{¦Ð}{6}£¬\frac{¦Ð}{3}}]$ʱ£¬º¯Êýy=g£¨x£©µÄͼÏóÓëÖ±Ïßy=mÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=5£¬BC=4£¬AA1=3£¬Ñظó¤·½Ìå¶Ô½ÇÃæABC1D1½«Æä½Ø³ÉÁ½²¿·Ö£¬²¢½«ËüÃÇÔÙÆ´³ÉÒ»¸öеÄËÄÀâÖù£¬ÄÇôÕâ¸öËÄÀâÖù±íÃæ»ýµÄ×î´óֵΪ114£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈôÖ´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼºó£¬Êä³öµÄ½á¹ûÊÇ-29£¬ÔòÅжϿòÖеÄÕûÊýkµÄÖµÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªF1£¬F2·Ö±ðÊÇË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£¬Èô¡÷ABF2ÊÇÈñ½ÇÈý½ÇÐΣ¬Ôò¸ÃË«ÇúÏßÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{1£¬1+\frac{{\sqrt{2}}}{2}}£©$B£®$£¨{1+\frac{{\sqrt{2}}}{2}£¬+¡Þ}£©$C£®$£¨{1£¬1+\sqrt{2}}£©$D£®$£¨{1+\sqrt{2}£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÉèÊýÁÐ{an}µÄǰnÏîÖ®»ýΪPn=a1a2¡­an£¨n¡ÊN*£©£¬ÈôPn=2${\;}^{\frac{n£¨n-1£©}{2}}$£¬Ôò$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{9}}$=£¨¡¡¡¡£©
A£®$\frac{127}{64}$B£®$\frac{511}{256}$C£®$\frac{1023}{512}$D£®$\frac{511}{512}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=cos$\frac{¦Ð}{6}x-\sqrt{3}sin\frac{¦Ð}{6}$x£¨0¡Üx¡Ü5£©µÄͼÏó¹ýµãB£¨4£¬m£©£¬
£¨¢ñ£©Èô½Ç¦ÁµÄ¶¥µãÎª×ø±êÔ­µã£¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬ÆäÖձ߹ýµãB£¬Çósin2¦ÁµÄÖµ£»
£¨¢ò£©Çóº¯Êýy=f£¨x£©µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÏòÁ¿$\overrightarrow a£¬\overrightarrow b$Âú×ã$|\overrightarrow b|=3$£¬$\overrightarrow a$ÔÚ$\overrightarrow b$·½ÏòÉϵÄͶӰÊÇ$\frac{3}{2}$£¬Ôò$\overrightarrow a•\overrightarrow b$=$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸