精英家教网 > 高中数学 > 题目详情
2.下列判断不正确的是(  )
A.若ξ-B(4,0.25),则Eξ=1
B.命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样
D.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等

分析 根据统计和命题的相关知识,逐一分析给定四个答案的真假,可得答案.

解答 解:A中,若ξ-B(4,0.25),则Eξ=4×0.25=1”,故正确;
B中,命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”,故正确;
从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样,故正确;
10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数为15,众数为17,两者不等,故错误,
故选:D

点评 本题以命题的真假判断为载体,考查了二项分布,全称(特称)命题的判定,抽样方法,中位数与众数等知识点,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.对任意两个非零的平面向量$\overrightarrow a$和$\overrightarrow b$,定义$\overrightarrow a*\overrightarrow b=\frac{\overrightarrow a•\overrightarrow b}{\overrightarrow b•\overrightarrow b}$;若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|{\overrightarrow a}|>|{\overrightarrow b}|>0$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ∈(0,$\frac{π}{4}$),且$\overrightarrow a*\overrightarrow b,\overrightarrow b*\overrightarrow a$都在集合{$\frac{n}{2}$|n∈Z}中,则$\overrightarrow a*\overrightarrow b$=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若sin20°=a,则sin230°的值为(  )
A.2a2-1B.1-a2C.a2-1D.1-2a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)若DE=2,BE=4,试求DC的值;
(Ⅱ)在(Ⅰ)的条件下,O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果对于函数f(x)定义域内任意的两个自变量的值x1,x2,当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数.
则 ①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,
四个函数中为不严格增函数的是①③,若已知函数g(x)的定义域、值域分别为A、B,A={1,2,3},B⊆A,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=e2x,g(x)=lnx+$\frac{1}{2}$,对?a∈R,?b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为(  )
A.$1+\frac{ln2}{2}$B.$1-\frac{ln2}{2}$C.$2\sqrt{e}-1$D.$\sqrt{e}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=$\frac{l{n}^{2}6}{4}$,b=ln2ln3,c=$\frac{l{n}^{2}2π}{4}$,则a,b,c的大小关系是(  )
A.a>b>cB.a<b<cC.c>a>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设O是△ABC的外心,a、b、c分别为△ABC内角A、B、C的对边,且b2-2b+c2=0,则$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范围是[-$\frac{1}{4}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若执行如图所示的程序框图后,输出的结果是-29,则判断框中的整数k的值是5.

查看答案和解析>>

同步练习册答案