精英家教网 > 高中数学 > 题目详情
17.如果对于函数f(x)定义域内任意的两个自变量的值x1,x2,当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数.
则 ①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,
四个函数中为不严格增函数的是①③,若已知函数g(x)的定义域、值域分别为A、B,A={1,2,3},B⊆A,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)有9个.

分析 由已知中不严格的增函数的定义,逐一分析给定的四个函数,是否满足定义,可得结论;再根据不严格的增函数的定义,逐一列举出满足条件的函数g(x),可得答案.

解答 解:由已知中:函数f(x)定义域内任意的两个自变量的值x1,x2
当x1<x2时,都有f(x1)≤f(x2),
且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),
就称f(x)为定义域上的不严格的增函数.
①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,满足条件,为定义在R上的不严格的增函数;
②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,当x1=-$\frac{π}{2}$,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),f(x1)>f(x2),故不是不严格的增函数;
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,满足条件,为定义在R上的不严格的增函数;
④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,当x1=$\frac{1}{2}$,x2∈(1,$\frac{3}{2}$),f(x1)>f(x2),故不是不严格的增函数;
故已知的四个函数中为不严格增函数的是①③;
∵函数g(x)的定义域、值域分别为A、B,A={1,2,3},B⊆A,且g(x)为定义域A上的不严格的增函数,
则满足条件的函数g(x)有:
g(1)=g(2)=g(3)=1,
g(1)=g(2)=g(3)=2,
g(1)=g(2)=g(3)=3,
g(1)=g(2)=1,g(3)=2,
g(1)=g(2)=1,g(3)=3,
g(1)=g(2)=2,g(3)=3,
g(1)=1,g(2)=g(3)=2,
g(1)=1,g(2)=g(3)=3,
g(1)=2,g(2)=g(3)=3,
故这样的函数共有9个,
故答案为:①③;9.

点评 本题考查函数单调性的性质,求解本题的关键是正确理解所给的定义,结合函数定义中对应的思想,对可能的函数进行列举,得出可能函数的种数,本题比较抽象,解题时要注意对其情况分类讨论,不重不漏,本题易因为分类不清,或者考虑情况不严密出错,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,抛物线C1:x2=2py(p>0)与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个交点为T($\frac{4}{3}$,$\frac{1}{3}$),F(1,0)为椭圆C2的右焦点.
(1)求抛物线C1与椭圆C2的方程;
(2)设M(x0,y0)是抛物线C1上任意一点,过M作抛物线C1的切线l,直线l与椭圆C2,交于A、B两点,定点N(0,$\frac{2}{3}$),求△NBA的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.?ABCD的一组邻边所在直线的方程分别为x+y+1=0与3x-y+3=0,对角线AC,BD的交点坐标为(2,1),求另外两边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若x∈R,那么$\frac{x}{x+1}$是正数的充要条件是(  )
A.x>0B.x<-1C.x>0或x<-1D.-1<x<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知各项均为正数的无穷数列{an}满足anan+2=an+12-t2(n∈N*,t为常数).
(1)设{an}是首项为1的等差数列,当t=1时,求数列{an}的通项公式;
(2)若数列{an+t}是等比数列,求t的值;
(3)若a2=a1+t,求证:数列{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列判断不正确的是(  )
A.若ξ-B(4,0.25),则Eξ=1
B.命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样
D.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1:
M900700300100
y0.53.56.59.5
哈尔滨市某月AQI指数频数分布如下表2:
M[0,200](200,400](400,600](600,800](800,1000]
频数361263
(1)设x=$\frac{M}{100}$,根据表1的数据,求出y关于x的回归方程;
(参考公式:$\hat y=\hat bx+\hat a$;其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\overline a=\overline y-\hat b\overline x$)
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当n≥3,n∈N时,对于集合M={1,2,3,…,n},集合M的所有含3个元素的子集分别表示为N1,N2,N3,…NM(n)-1,NM(n),其中M(n)表示集合M的含3个元素的子集的个数.设pi为集合Ni中的最大元素,qi为集合Ni中的最小元素,1≤i≤M(n),记P=p1+p2+…+pM(n)-1+pM(n),Q=q1+q2+…qM(n)-1+qM(n)
(1)当n=4时,分别求M(4),P,Q;
(2)求证:P=3Q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
    xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.

查看答案和解析>>

同步练习册答案