分析 由已知中不严格的增函数的定义,逐一分析给定的四个函数,是否满足定义,可得结论;再根据不严格的增函数的定义,逐一列举出满足条件的函数g(x),可得答案.
解答 解:由已知中:函数f(x)定义域内任意的两个自变量的值x1,x2,
当x1<x2时,都有f(x1)≤f(x2),
且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),
就称f(x)为定义域上的不严格的增函数.
①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,满足条件,为定义在R上的不严格的增函数;
②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,当x1=-$\frac{π}{2}$,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),f(x1)>f(x2),故不是不严格的增函数;
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,满足条件,为定义在R上的不严格的增函数;
④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,当x1=$\frac{1}{2}$,x2∈(1,$\frac{3}{2}$),f(x1)>f(x2),故不是不严格的增函数;
故已知的四个函数中为不严格增函数的是①③;
∵函数g(x)的定义域、值域分别为A、B,A={1,2,3},B⊆A,且g(x)为定义域A上的不严格的增函数,
则满足条件的函数g(x)有:
g(1)=g(2)=g(3)=1,
g(1)=g(2)=g(3)=2,
g(1)=g(2)=g(3)=3,
g(1)=g(2)=1,g(3)=2,
g(1)=g(2)=1,g(3)=3,
g(1)=g(2)=2,g(3)=3,
g(1)=1,g(2)=g(3)=2,
g(1)=1,g(2)=g(3)=3,
g(1)=2,g(2)=g(3)=3,
故这样的函数共有9个,
故答案为:①③;9.
点评 本题考查函数单调性的性质,求解本题的关键是正确理解所给的定义,结合函数定义中对应的思想,对可能的函数进行列举,得出可能函数的种数,本题比较抽象,解题时要注意对其情况分类讨论,不重不漏,本题易因为分类不清,或者考虑情况不严密出错,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若ξ-B(4,0.25),则Eξ=1 | |
| B. | 命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0” | |
| C. | 从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样 | |
| D. | 10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| M | 900 | 700 | 300 | 100 |
| y | 0.5 | 3.5 | 6.5 | 9.5 |
| M | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
| 频数 | 3 | 6 | 12 | 6 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com