精英家教网 > 高中数学 > 题目详情
7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
    xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.

分析 (Ⅰ)由条件知,$\frac{1}{3}ω+ϕ=\frac{π}{2}$,$\frac{7}{3}ω+ϕ=\frac{3π}{2}$,从而解得ω,φ,即可解得表中的x1,x2,x3的值及函数f(x)的解析式
(Ⅱ)由函数y=Asin(ωx+φ)的图象变换规律可得g(x)解析式,由题意可求最高点为$M({1,\sqrt{3}})$,最低点为$N({3,-\sqrt{3}})$,解得$\overrightarrow{ON}=({3,-\sqrt{3}})$,$\overrightarrow{NM}=({-2,2\sqrt{3}})$,由向量的夹角公式结合角的范围即可得解.

解答 解:(Ⅰ)由条件知,$\frac{1}{3}ω+ϕ=\frac{π}{2}$,$\frac{7}{3}ω+ϕ=\frac{3π}{2}$,
∴$ω=\frac{π}{2}$,$ϕ=\frac{π}{3}$,
∴${x_1}=-\frac{2}{3},{x_2}=\frac{4}{3},{x_3}=\frac{10}{3}$,$f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$.
(Ⅱ)∵函数f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,
∴$g(x)=\sqrt{3}sin[\frac{π}{2}(x-\frac{2}{3})+\frac{π}{3}]=\sqrt{3}sin\frac{π}{2}x$,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为$M({1,\sqrt{3}})$,最低点为$N({3,-\sqrt{3}})$,∴$\overrightarrow{ON}=({3,-\sqrt{3}})$,$\overrightarrow{NM}=({-2,2\sqrt{3}})$,
∴$cosθ=\frac{{\overrightarrow{ON}•\overrightarrow{NM}}}{{|{\overrightarrow{ON}}|•|{\overrightarrow{NM}}|}}=-\frac{{\sqrt{3}}}{2}$,又0≤θ≤π,∴$θ=\frac{5π}{6}$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如果对于函数f(x)定义域内任意的两个自变量的值x1,x2,当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数.
则 ①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,
四个函数中为不严格增函数的是①③,若已知函数g(x)的定义域、值域分别为A、B,A={1,2,3},B⊆A,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D为BC边上一点,若△ABD是等边三角形,且AC=4$\sqrt{3}$,则△ADC的面积的最大值为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“a>b,c>0”是“ac>bc”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为$\frac{1}{20}$,则总体的个数为300.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若执行如图所示的程序框图后,输出的结果是-29,则判断框中的整数k的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合M⊆{1,2,…,2011},满足:在M的任意三个元素中,都可以找到两个元素a,b,使得a|b或b|a,求|M|的最大值(其中|M|表示集合M的元素个数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)图象的一部分.
(1)求出A,ω,φ的值;
(2)当x∈(0,$\frac{π}{2}$)时,求不等式f(x-$\frac{π}{6}$)>f2($\frac{x}{2}$-$\frac{π}{6}$)-2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线l 交椭圆$\frac{x^2}{8}+\frac{y^2}{4}$=1于M、N两点,椭圆的上顶点为B点,若△BMN的重心恰好落在椭圆的右焦点上,则直线l的方程是(  )
A.2x-3y-9=0B.3x-2y-11=0C.3x+2y-7=0D.x-y-5=0

查看答案和解析>>

同步练习册答案