精英家教网 > 高中数学 > 题目详情
3.如图,某污水处理厂要在一个矩形ABCD的池底水平铺设污水净化管道(直角△EFG,E是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口E是AB的中点,F,G分别落在AD,BC上,且AB=20m,AD=10$\sqrt{3}$m,设∠GEB=θ.
(1)试将污水管道的长度l表示成θ的函数,并写出定义域;
(2)当管道长度l为何值时,污水净化效果最好,并求此时管道的长度.

分析 (1)根据题意分别表示出EG,EF,FG,进而表示出l的表达式.
(2)设sinθ+cosθ把l转化为关于t的方程,利用单调性确定最大值.

解答 (1)因为EG=$\frac{10}{cosθ}$,EF=$\frac{10}{sinθ}$,FG=$\frac{10}{sinθcosθ}$,
l=10($\frac{1}{sinθ}$+$\frac{1}{cosθ}$+$\frac{1}{sinθcosθ}$),θ∈[$\frac{π}{6}$,$\frac{π}{3}$].

(2)l=$\frac{1+sinθ+cosθ}{sinθcosθ}$•10
设t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)∈[$\frac{\sqrt{3}+1}{2}$,$\sqrt{2}$],
l=$\frac{2(t+1)}{{t}^{2}-1}$•10=$\frac{20}{t-1}$,为减函数,
∴当θ=$\frac{π}{6}$或$\frac{π}{3}$时,有最大值20($\sqrt{3}$+1),
答:当θ=$\frac{π}{6}$或$\frac{π}{3}$时,污水净化效果最好,l最大值20($\sqrt{3}$+1)m.

点评 本题主要考查了三角形问题的实际应用.解题的重要的地方是建立数学模型,把实际问题转化为数学问题来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义运算“?”,两个实数a,b的“a?b”运算如图所示,若输入a=2cos$\frac{2015π}{3}$b=2,则输出P的值为(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,x2-2x-4≤0,则¬p为(  )
A.?x∈R,x2-2x-4≥0B.?x0∈R,x02-2x0-4>0
C.?x∉R,x2-2x+4≤0D.?x0∈R,x02-2x0-4>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q(p≠0)对于任意的n∈N*都成立,我们称这个数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,判断数列{an},{bn}是否为“M类数列”,并说明理由;
(2)若数列{an}是“M类数列”,则数列{an+an+1}、{an•an+1}是否一定是“M类数列”,若是的,加以证明;若不是,说明理由;
(3)若数列{an}满足:a1=1,an+an+1=3•2n(n∈N*),设数列{an}的前n项和为Sn,求Sn的表达式,并判断{an}是否是“M类数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x的焦点为F,准线为l,过抛物线上一点P作PE⊥l于E,若直线EF的一个方向向量为(1,$\sqrt{3}$),则|PF|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面内一动点 M(x,y)到定点F(0,1)和到定直线y=-1的距离相等,设M的轨迹是曲线C.
(1)求曲线C的方程;
(2)在曲线C上找一点P,使得点P到直线y=x-2的距离最短,求出P点的坐标;
(3)设直线l:y=x+m,问当实数m为何值时,直线l与曲线C有交点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对任意两个非零的平面向量$\overrightarrow a$和$\overrightarrow b$,定义$\overrightarrow a*\overrightarrow b=\frac{\overrightarrow a•\overrightarrow b}{\overrightarrow b•\overrightarrow b}$;若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|{\overrightarrow a}|>|{\overrightarrow b}|>0$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ∈(0,$\frac{π}{4}$),且$\overrightarrow a*\overrightarrow b,\overrightarrow b*\overrightarrow a$都在集合{$\frac{n}{2}$|n∈Z}中,则$\overrightarrow a*\overrightarrow b$=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.关于函数f(x)=x2(lnx-a)+a,给出以下4个结论:
①?a>0,?x>0,f(x)≥0;
②?a>0,?x>0,f(x)≤0;
③?a>0,?x>0,f(x)≥0;
④?a>0,?x>0,f(x)≤0.
其中正确结论的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)若DE=2,BE=4,试求DC的值;
(Ⅱ)在(Ⅰ)的条件下,O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

同步练习册答案