精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆.

1)曲线相交于两点,上异于的点,若直线的斜率为1,求直线的斜率;

2)若的左焦点为,右顶点为,直线.的直线相交于在第一象限)两点,与相交于,是否存在使的面积等于的面积与的面积之和.若存在,求直线的方程;若不存在,请说明理由.

【答案】1;(2)直线不存在,理由见解析

【解析】

(1),,,利用点差法可得,从而求出;

(2)假设存在满足题意,,,,,,,可得,:,,,,再联立直线与椭圆方程,得到韦达定理,将之与②联立求解,有解,则直线存在,无解,则直线不存在.

(1)由已知设,,,

因为点均在椭圆,

所以,,

两式相减得,

,,

;

(2),,,

,

,

,

假设存在使得的面积等于的面积与的面积之和,

,,

:,,,,

,将之代入,整理得,

,

,

②③联立得,,

把⑤代入④得,

化简得,

由于此方程无解,故所求直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各20次连续正常运行的时间长度(单位:天)数据,并绘制了如下茎叶图:

(Ⅰ)(1)设所采集的40个连续正常运行时间的中位数,并将连续正常运行时间超过和不超过的次数填入下面的列联表:

超过

不超过

改造前

改造后

试写出的值;

2)根据(1)中的列联表,能否有的把握认为生产线技术改造前后的连续正常运行时间有差异?

附:

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)工厂的生产线的运行需要进行维护.工厂对生产线的生产维护费用包括正常维护费、保障维护费两种对生产线设定维护周期为天(即从开工运行到第天()进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为0.5万元次;保障维护费第一次为0.2万元周期,此后每增加一次则保障维护费增加0.2万元.现制定生产线一个生产周期(以120天计)内的维护方案:234.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个同样大小的球两两相切,点是球上的动点,则直线与直线所成角的正弦值的取值范围为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为年轻型人口;年龄中位数在2030岁为成年型人口;年龄中位数在30岁以上为老龄型人口.

如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为成年型人口;②从2010年至2020年为老龄型人口;③放开二孩政策之后我国仍为老龄型人口.其中正确的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙两种不透明充气包装的袋装零食,每袋零食甲随机附赠玩具中的一个,每袋零食乙从玩具中随机附赠一个.记事件:一次性购买袋零食甲后集齐玩具;事件:一次性购买袋零食乙后集齐玩具.

1)求概率

2)已知,其中为常数,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知设数列的前n项和为,且

1)求数列通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是九江市20194月至20203月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r0.83,则下列结论错误的是(

A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关

B.月温差(月最高气温﹣月最低气温)的最大值出现在10

C.912月的月温差相对于58月,波动性更大

D.每月最高气温与最低气温的平均值在前6个月逐月增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

1)求曲线的普通方程;

2)已知点,若曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.28

4.72

3.58

2.70

2.15

倒闭企业所占比例

21.4%

19.1%

14.5%

10.9%

8.7%

1)由所给数据可用线性回归模型拟合的关系,请用相关系数加以说明;

2)建立关于的回归方程,预测年成立的企业中倒闭企业所占比例.

参考数据:

相关系数,样本的最小二乘估计公式为.

查看答案和解析>>

同步练习册答案