精英家教网 > 高中数学 > 题目详情
8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{3}$,直线l:y=x+2与以原点O为圆心,椭圆的短轴长为直径的圆O相切.
(1)求椭圆C的方程;
(2)求椭圆C与直线y=kx(k>0)在第一象限的交点为A.
①设$B({\sqrt{2},1})$,且$\overrightarrow{OA}•\overrightarrow{OB}=\sqrt{6}$,求k的值;
②若A与D关于x的轴对称,求△AOD的面积的最大值.

分析 (1)求得圆O的方程,运用直线和相切的条件:d=r,求得b,再由离心率公式和a,b,c的关系,可得a,进而得到椭圆方程;
(2)设出A的坐标,代入椭圆方程,求得交点A的坐标,①运用向量的数量积的坐标表示,计算即可得到所求值;
②由三角形的面积公式,结合基本不等式即可得到所求最大值.

解答 解:(1)由题设可知,圆O的方程为x2+y2=b2
因为直线l:x-y+2=0与圆O相切,故有$\frac{|2|}{{\sqrt{{1^2}+{{({-1})}^2}}}}=b$,
所以$b=\sqrt{2}$.                                                                
因为$e=\frac{c}{a}=\frac{{\sqrt{3}}}{3}$,所以有a2=3c2=3(a2-b2),即a2=3.
所以椭圆C的方程为$\frac{x^2}{3}+\frac{y^2}{2}=1$.                                             
(2)设点A(x0,y0)(x0>0,y0>0),则y0=kx0
由$\left\{\begin{array}{l}{y_0}=k{x_0}\\ \frac{x_0^2}{3}+\frac{y_0^2}{2}=1\end{array}\right.$解得$\left\{\begin{array}{l}{x_0}=\frac{{\sqrt{6}}}{{\sqrt{2+3{k^2}}}}\\{y_0}=\frac{{\sqrt{6}k}}{{\sqrt{2+3{k^2}}}}.\end{array}\right.$,
①∵$\overrightarrow{OA}•\overrightarrow{OB}=\frac{{\sqrt{2}×\sqrt{6}}}{{\sqrt{2+3{k^2}}}}+\frac{{\sqrt{6}k}}{{\sqrt{2+3{k^2}}}}=\sqrt{6}$,∴$k=\sqrt{2}$(k=0舍去).             
②∵${S_{△AOD}}=\frac{1}{2}{x_0}×2{y_0}=kx_0^2=\frac{6k}{{2+3{k^2}}}=\frac{6}{{\frac{2}{k}+3k}}≤\frac{6}{{2\sqrt{6}}}=\frac{{\sqrt{6}}}{2}$,
(当且仅当$k=\frac{{\sqrt{6}}}{3}$时取等号),
∴S△AOD的最大值为$\frac{{\sqrt{6}}}{2}$.

点评 本题考查椭圆的方程的求法,注意运用离心率公式和直线与圆相切的条件:d=r,同时考查直线方程和椭圆方程联立,求交点,考查向量的数量积的坐标表示和基本不等式求最值的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.计算下列几个式子:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°,②2cos215°,③,$\frac{1+tan15°}{1-tan15°}$,④$\frac{tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$,结果为$\sqrt{3}$的是(  )
A.①②B.①③C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线l的斜率为$-\frac{{\sqrt{3}}}{3}$,则直线l的倾斜角为(  )
A.115°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={1,2,3,4,5,6},集合M={1,4},N={1,3,5},则N∩(∁UM)=(  )
A.{1}B.{3,5}C.{1,3,4,5}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l1:x+y-1=0,l2:x-y-a=0(a是常数),则l1与l2(  )
A.平行B.垂直C.重合D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1,F2,如果椭圆C上的动点到点F1的距离的最大值是$\sqrt{3}+\sqrt{2}$,短轴一个端点到点F2的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设过点F2且斜率为1的直线l与椭圆C交于A、B两点,求△ABF1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=log3(3+x)+log3(3-x).
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数); ②当2≤x≤4时,f(x)=1-(x-3)2,若f(x)图象上所有极大值对应的点均落在同一条直线上,则c=(  )
A.1或$\frac{1}{2}$B.$\frac{1}{2}$或2C.1或2D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是R上的可导函数,且f′(x)=1+cosx,则函数f(x)的解析式可以为f(x)=x+sinx.(只须写出一个符合题意的函数解析式即可)

查看答案和解析>>

同步练习册答案