精英家教网 > 高中数学 > 题目详情
17.计算下列几个式子:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°,②2cos215°,③,$\frac{1+tan15°}{1-tan15°}$,④$\frac{tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$,结果为$\sqrt{3}$的是(  )
A.①②B.①③C.①②③D.②③④

分析 ①由两角和的正切公式的变形用化简;
②由二倍角的余弦公式的变形用化简;
③凑出两角和的正切公式的形式,化简可得;
④凑出二倍角的正切公式的形式,化简可得.

解答 解:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°
=tan(25°+35°)(1-tan25°tan35°)+$\sqrt{3}$tan25°tan35°
=tan60°(1-tan25°tan35°)+$\sqrt{3}$tan25°tan35°
=$\sqrt{3}$(1-tan25°tan35°)+$\sqrt{3}$tan25°tan35°=$\sqrt{3}$;
②2cos215°=1+cos30°=1+$\frac{\sqrt{3}}{2}$;
③$\frac{1+tan15°}{1-tan15°}$=$\frac{tan45°+tan15°}{1-tan15°tan45°}$=tan(45°+15°)=tan60°=$\sqrt{3}$;
④$\frac{tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$=$\frac{1}{2}$•$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$=$\frac{1}{2}$tan$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查三角函数化简求值,熟练应用三角函数公式是解决问题关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.($\root{3}{x}$-$\frac{1}{x}$)n的展开式中的二项式系数之和为256.则展开式中的常数项是28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在数列{an}中,a1=1,an+1=2an+2n,则a10=5120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用复合函数求导法则求下列函数在x=0处的导数:
(1)f(x)=(2x-1)3
(2)g(x)=sin(5x+$\frac{π}{3}$);
(3)m(x)=e6x-4
(4)n(x)=$\frac{sin2x}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C所对的边分别是a、b、c,$\frac{sinA}{sinB+sinC}$=$\frac{b-c}{a-c}$.
(1)求角B;
(2)若b=$\sqrt{3}$,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+a-2sin2x(a∈R,a为常数).
(1)求函数的最小正周期;
(2)求函数的单凋递减区间;
(3)若x∈[0,$\frac{π}{2}$],f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.有一个长度为5m的梯子贴靠在笔直的墙上,由于地面的细微倾斜(计算时忽略不计),其下端沿地板以3m/s的速度离开墙角滑动,当其下端离开墙角3m时,梯子上端下滑的速度为1m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C的顶点是椭圆E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的中心O,焦点与椭圆E的右焦点重合.过抛物线C的焦点的直线交抛物线于A,B两点,且$|AB|=\frac{5}{2}p$.
(1)求抛物线的方程;
(2)求直线AB所在的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{3}$,直线l:y=x+2与以原点O为圆心,椭圆的短轴长为直径的圆O相切.
(1)求椭圆C的方程;
(2)求椭圆C与直线y=kx(k>0)在第一象限的交点为A.
①设$B({\sqrt{2},1})$,且$\overrightarrow{OA}•\overrightarrow{OB}=\sqrt{6}$,求k的值;
②若A与D关于x的轴对称,求△AOD的面积的最大值.

查看答案和解析>>

同步练习册答案