精英家教网 > 高中数学 > 题目详情
13.已知集合M={x|x2-4x<0},N={x||x|≤2},则M∪N=(  )
A.(-2,4)B.[-2,4)C.(0,2)D.(0,2]

分析 先求出集合M,N,再根据并集的定义求出即可.

解答 解:集合M={x|x2-4x<0}=(0,4),N={x||x|≤2}=[-2.2].
∴M∪N=[-2,4),
故选:B

点评 本题考查了集合得并集运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等比数列{an}的前n项和Sn,且a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,则$\frac{S_n}{a_n}$=(  )
A.4n-1B.4n-1C.2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在边长为1的菱形ABCD中,∠A=60°,E是线段CD上一点,满足|$\overrightarrow{CE}$|=2||$\overrightarrow{DE}$|,如图所示,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{BE}$;
(2)在线段BC上是否存在一点F满足AF⊥BE?若存在,确定F点的位置,并求|$\overrightarrow{AF}$|;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(Ⅰ)若f(1)=0,求函数f(x)的最大值;
(Ⅱ)令g(x)=f(x)-(ax-1),求函数g(x)的单调区间;
(Ⅲ)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若O是△ABC的重心,$\overrightarrow{AB}$$•\overrightarrow{AC}$=-2,A=120°,则|$\overrightarrow{AO}$|的最小值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-$\frac{1}{x}$+ax,a∈R.
(Ⅰ)若函数f(x)在x=1处的切线与x轴平行,求a值;
(Ⅱ)讨论函数f(x)在其定义域内的单调性;
(Ⅲ)定义:若函数h(x)在区间D上任意x1,x2都有$h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$,则称函数h(x)是区间D上的凹函数.设函数g(x)=x2f′(x),a>0,其中f′(x)是f(x)的导函数.根据上述定义,判断函数g(x)是否为其定义域内的凹函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合M={x|x2-5x+4≤0},N{x|x2-(a+1)x+a≤0},若M∪N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在三维空间直角坐标系中,对其中任何一向量$\overrightarrow{x}$=(x1,x2,x3),定义范数||x||,它满足以下性质:
①||x||≥0,当且仅当x为零向量时,不等式取等号;
②对任意实数λ,||λx||=|λ|•||x||(注:此处点乘号为普通的乘号,无点乘意义);
③||x||+||y||≥||x+y||.
试求解以下问题:
在二维平面直角坐标系中,有向量$\overrightarrow{x}$=(x1,x2),下面给出的几个表达式中,可能表示向量$\overrightarrow{x}$的范数是②⑤(把所有正确的答案的序号都填上).
①$\sqrt{{{x}_{1}}^{2}}$+2x22
②$\sqrt{{{x}_{1}}^{2}+2{{x}_{2}}^{2}}$;
③$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$;
④$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2}$;
⑤$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个棱锥的三视图如图所示,则它的体积为4.

查看答案和解析>>

同步练习册答案