精英家教网 > 高中数学 > 题目详情
6.计算下列各式.
(1)化简:$\frac{{{{sin}^2}(α+π)•cos(π+α)•cot(-α-2π)}}{{tan(π+α)•{{cos}^3}(-α-π)}}$
(2)求值:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)-3]${\;}^{\frac{4}{3}}$+16-0.75-lg$\sqrt{0.1}$-log29×log32.

分析 (1)利用诱导公式、同角三角函数基本关系式即可得出;
(2)利用指数幂与对数的运算法则即可得出.

解答 解:(1)原式=$\frac{{(-sinα)}^{2}•(-cosα)•[-cot(2π+α)]}{tanα•{cos}^{3}(π+α)}=\frac{{sin}^{2}α•(-cosα)•(-cotα)}{tanα•{(-cosα)}^{3}}$=$\frac{{{{sin}^2}α•cosα•cotα}}{{-tanα•{{cos}^3}α}}=-1$;
(2)原式=$\frac{10}{4}+\frac{1}{16}+\frac{1}{8}+\frac{1}{2}-2=\frac{19}{16}$.

点评 本题考查了诱导公式、同角三角函数基本关系式、指数幂与对数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{x}^{2}+2}{x}$.
(1)判断奇偶性,并给出证明;
(2)写出单调区间;
(3)若f(x)>a对任意x∈[2,+∞)恒成立,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是(  )
A.外切B.内切C.相交D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且an+1=22n•an+2n2(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=ex,x∈R,a<b,记A=f(b)-f(a),B=$\frac{1}{2}$(b-a)(f(a)+f(b)),则A,B的大小关系是(  )
A.A>BB.A≥BC.A<BD.A≤B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A={x|x2+2x-8=0},B={x|x2-5x+8=2},C={x|x2-ax+a2-19=0};若A∩C=∅,B∩C≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.记f(x)=ax2-bx+c,若不等式f(x)>0的解集为(1,3),试解关于t的不等式f(2t+8)<f(2+22t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C的对边分别为a,b,c,角A,B,C成等差数列,若$a=1,b=\sqrt{3}$,则c等于(  )
A.2B.$\sqrt{2}$C.$\frac{3}{2}$D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案