精英家教网 > 高中数学 > 题目详情
3.设(x-$\sqrt{2}$)n展开式中,第二项与第四项的系数之比为1:2,则展开式中第三项的二次项系数为6.

分析 根据 $\frac{{C}_{n}^{1}•(-\sqrt{2})}{{C}_{n}^{3}{•(-\sqrt{2})}^{3}}$=$\frac{1}{2}$ 求得n=4,再根据展开式中第三项的二次项系数为${C}_{n}^{2}$,可得结论.

解答 解:∵(x-$\sqrt{2}$)n展开式中,第二项与第四项的系数之比为1:2,
∴$\frac{{C}_{n}^{1}•(-\sqrt{2})}{{C}_{n}^{3}{•(-\sqrt{2})}^{3}}$=$\frac{1}{2}$,∴n=4,
则展开式中第三项的二次项系数为${C}_{n}^{2}$=${C}_{4}^{2}$=6,
故答案为:6.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,Sn为其前n项的和,a3+a5=14,则S7的值为(  )
A.49B.44C.53D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=m(x-2m)(x+m+3),g(x)=x-1,满足条件:?x∈R,f(x)<0或g(x)<0成立,则m的取值范围是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设x≥1,y≥1,证明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)设a,b,c都是正数,求证:$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A(3,$\sqrt{3}$),O为坐标原点,点P(x,y)满足$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$,则满足条件点P所形成的平面区域的面积为$\sqrt{3}$,$\overrightarrow{OP}$在$\overrightarrow{OA}$方向上投影的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ
(Ⅰ)求曲线C的普通方程.
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,是函数y=f(x)的导函数y=f′(x)的图象,则下面哪一个判断是正确的(  )
A.在区间(-3,1)内y=f(x)是增函数B.在区间(1,3)内y=f(x)是减函数
C.在区间(4,5)内y=f(x)是增函数D.在x=2时,y=f(x)取得极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x∈R|ax2-2x+1=0}
(1)若集合A中只有一个元素,用列举法写出集合A;
(2)若集合A中至多只有一个元素,求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.“[x]”表示不超过实数x的最大的整数,如[1.3]=1,[2]=2,[-2.3]=-3,又记{x}=x-[x],已知函数f(x)=[x]-{x},x∈R,给出以下命题:
①f(x)的值域为R;
②f(x)在区间[k,k+1],k∈Z上单调递减;
③f(x)的图象关于点(1,0)中心对称;
④函数|f(x)|为偶函数.
其中所有正确命题的序号是①(将所有正确命题序号填上)

查看答案和解析>>

同步练习册答案