精英家教网 > 高中数学 > 题目详情
关于x的方程ax=-x2+2x+aa>0,且a≠1)的解的个数是(   )
A.1B.2C.0D.视a的值而定
B
因为函数时取得最大值,函数时的值为,因为恒成立,所以有2个交点,故选择B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题13分)某饮料生产企业为了占有更多的市场份额,拟在2010年度进行
一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足
。已知2010年生产饮料的设备折旧,维修等固定费用为3 万元,每生产1万件
饮料需再投入32万元的生产费用,若将每件饮料的售价定为:其生产成本的150%与平均
每件促销费的一半之和,则该年生产的饮料正好能销售完。
(1)将2010年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2010年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,有下列五个命题:
①若存在反函数,且与反函数图象有公共点,则公共点一定在直线上;
②若上有定义,则一定是偶函数;
③若是偶函数,且有解,则解的个数一定是偶数;
④若是函数的周期,则,也是函数的周期;
是函数为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为                  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若定义在上的奇函数满足当时,.
(1)求上的解析式;
(2)判断上的单调性,并给予证明;
(3)当为何值时,关于方程上有实数解?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,定义
时,函数的值域是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x是偶函数.
(Ⅰ)求m、n的值;(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数。
(1)当m=时,该商品的价格上涨多少,就能使销售的总金额最大?
(2)如果适当地涨价,能使销售总金额增加,求m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域是为整数),值域是,则满
足条件的整数数对共有_________个

查看答案和解析>>

同步练习册答案