精英家教网 > 高中数学 > 题目详情

【题目】已知圆,过点向圆引两条切线,切点为,若点的坐标为,则直线的方程为____________;若为直线上一动点,则直线经过定点__________.

【答案】. .

【解析】

由题意,求得以为直径的圆的方程,两圆的方程相减,即可得到直线的方程,设,求得以为直径的圆的方程,两圆的方程相减,则的方程为,即可判定,得到答案.

由题意,圆的圆心坐标为

则以为直径的圆的圆心为,半径为.

可得以为直径的圆的方程为,即

两圆的方程相减可得,即直线的方程为.

因为点为直线上一动点,设

因为是圆的切线,所以,

所以是圆与以为直径的两圆的公共弦,

可得以为直径的圆的方程为

又由圆的方程为

两圆的方程相减,则的方程为

可得满足上式,即过定点.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中所有正确的序号是_________

①两直线的倾斜角相等,则斜率必相等;

②若动点到定点和定直线的距离相等,则动点的轨迹是抛物线;

③已知是椭圆的两个焦点,过点的直线与椭圆交于两点,则的周长为

④曲线的参数方程为为参数,则它表示双曲线且渐近线方程为

⑤已知正方形,则以为焦点,且过两点的椭圆的离心率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+3x,其中a>0.

(1)当a=1时,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥的轴截面为等腰为底面圆周上一点。

(1)若的中点为,求证: 平面

(2)如果,求此圆锥的体积;

(3)若二面角大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,PA=PD=CD=BC=1.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为AB,离心率为,点P1)为椭圆上一点.

1)求椭圆C的标准方程;

2)如图,过点C01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1a2=a,且an+1=kan+an+2)对任意正整数n都成立,数列{an}的前n项和为Sn

1)若,且S2019=2019,求a

2)是否存在实数k,使数列{an}是公比不为1的等比数列,且任意相邻三项amam+1am+2按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;

3)若,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线分成面积相等的四部分,且截轴所得线段的长为2.

(1)的方程;

(2)若存在过点的直线与相交于两点,且,求实数的取值范围.

查看答案和解析>>

同步练习册答案