精英家教网 > 高中数学 > 题目详情
14.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是(  )
A.-1B.2C.3D.-1或2

分析 因为只有y=xα型的函数才是幂函数,所以只有m2-m-1=1函数f(x)=(m2-m-1)xm才是幂函数,又函数f(x)=(m2-m-1)xm在x∈(0,+∞)上为增函数,所以幂指数应大于0.

解答 解:要使函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,
则 $\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{m>0}\end{array}\right.$,
解得:m=2.
故选:B.

点评 本题考查了幂函数的概念及其单调性,解答的关键是掌握幂函数定义及性质,幂函数在幂指数大于0时,在(0,+∞)上为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列关系中正确的是(  )
A.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$B.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$
C.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$D.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆M过定点F(1,0),且与直线x=-1相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点F且斜率为2的直线交轨迹C于S,T两点,求弦ST的长度;
(3)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,sinC=$\frac{1}{2}$,则此三角形的面积是(  )
A.8B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图:若0<a<1,函数y=ax与y=x+a的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当0<a<1时,不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$的解集是($\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=cos(2x+\frac{2π}{3})+2{cos^2}x$,
(1)求函数f(x)的最小正周期和单调减区间;
(2)将函数f(x)图象向右平移$\frac{π}{3}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行下面的程序中,若输入x的值为5,则输出的y的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的序号是(  )
A.②、③B.③、④C.①、④D.①、②

查看答案和解析>>

同步练习册答案