精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
分析:(Ⅰ)要证明C1B⊥平面ABC,根据线面垂直的判定定理可知:需要证明C1B垂直于平面ABC内的两条相交直线即可.由已知AB⊥侧面BB1C1C,即可得到AB⊥BC1;在△CC1B中,先使用余弦定理求出BC1的长,进而再使用勾股定理得逆定理即可证得BC1⊥BC.
(Ⅱ)由于AB⊥侧面BB1C1C,要在线段CC1上找一点E,满足B1E⊥AE,根据三垂线定理,只要E点满足B1E⊥BE即可.若以线段BB1为直径画圆与线段CC1的交点(去掉点C、C1)即可满足要求.
解答:解:(I)证明:∵AB⊥侧面BB1C1C,∴AB⊥BC1
在△BC1C中,BC=1,CC1=BB1=2,∠BCC1=
π
3

由余弦定理得BC12=BC2+CC12-2BC•CC1COS
π
3
=12+22-2×1×2×
1
2
=3,∴BC1=
3

故有BC2+BC21=CC21,∴C1B⊥BC,
 而BC∩AB=B且AB,BC?平面ABC,
∴C1B⊥平面ABC.
(II)如图所示:以线段BB1为直径画圆O,分别交线段CC1于点E、C1
下面说明点E、C1是上述所画的圆与线段CC1的交点.
①∵B1C1=OB1=1,∠OB1C1=
π
3
,∴△OB1C1是正三角形,∴OC1=1,即点C1在所画的圆上.
②作OK⊥CC1,垂足为K,取EK=KC1,则点E也在所画的圆上.
∵OE=OC1=1,∴点E也在所画的圆上.
∵CC1∥BB1,∴∠OBE=∠OB1C1=
π
3
,∴△OBE是正三角形,∴EB=1,
∴EB=BC=1,又∠BCE=
π
3
,∴△BCE为正三角形,∴CE=1,即E点是线段CC1的中点.
下面证明点E满足条件.
∵AB⊥侧面BB1C1C,B1E⊥BE,据三垂线定理可得B1E⊥AE.
故线段CC1的中点E即是要求的点.
点评:本题综合考查了线面垂直的判定定理和性质定理及三垂线定理,深刻理解以上定理是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案