精英家教网 > 高中数学 > 题目详情
已知sn是等差数列{an}的前n项和,若s2≥4,s4≤16,则a5的最大值是
9
9
分析:由s2≥4,s4≤16,知 2a1+d≥4,4a1+6d≤16,所以 16≥4a1+6d=2(2a1+d)+4d≥8+4d,得到 d≤2,由此能求出a5的最大值.
解答:解:∵s2≥4,s4≤16,
∴a1+a2≥4,即 2a1+d≥4
a1+a2+a3+a4≤16,即 4a1+6d≤16
所以 16≥4a1+6d=2(2a1+d)+4d≥8+4d,
 得到 d≤2,
所以 4(a1+4d)=4a1+6d+10d≤16+20,
 即 a5≤9
∴a5 的最大值为 9.
故答案为:9.
点评:本题考查等差数列的性质和应用,是基础题,解题时要认真审题,仔细解答,注意等差数列前n项和公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下几个命题,正确的是
 

①函数f(x)=
x-1
2x+1
对称中心是(-
1
2
,-
1
2
)

②已知Sn是等差数列{an},n∈N*的前n项和,若S7>S5,则S9>S3
③函数f(x)=x|x|+px+q(x∈R)为奇函数的充要条件是q=0;
④已知a,b,m均是正数,且a<b,则
a+m
b+m
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,且S6=3,S11=18,则a9等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,且S11=35+S6,则S17的值为
119
119

查看答案和解析>>

同步练习册答案