精英家教网 > 高中数学 > 题目详情
已知椭圆的左、右焦点分别为,它的一条准线为,过点的直线与椭圆交于两点.当轴垂直时,.
(1)求椭圆的方程;
(2)若,求的内切圆面积最大时正实数的值.
(1);(2).
本试题主要是考查了椭圆的方程的求解以及,三角形的中内切圆的性质的运用,结合向量工具表示面积。
解:(1)当轴垂直时, 
 得 即---------------------(2分)
 解得
故所求椭圆的方程为.----------------------------------(2分)
(2)由点,可设
① 当轴垂直时,
(其中的内切圆半径)
  
  ,此时可知------------------------------------(2分)
②当轴不垂直时,
不妨设直线的方程为
代入 得

 ---------------(2分)
从而可得 
又点到直线的距离.
(其中的内切圆半径)
  -------------------------------------------(2分)


知在区间上该函数单调递增,
故当时,即直线的斜率不存在时,最大为,亦即的内切圆面积最大.
此时可知综上所求为.----------------------2分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C: 的一个顶点为A(2,0),离心率为,直线与椭圆C交于不同的两点M,N。
(1)  求椭圆C的方程
(2)  当的面积为时,求k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),直线为圆的一条切线并且过椭圆的右焦点,记椭圆的离心率为
(1)求椭圆的离心率的取值范围;
(2)若直线的倾斜角为,求的大小;
(3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点,过的右焦点任作直线,设两点(异于的左、右顶点),再分别过点的切线,记相交于点.
(1)求椭圆的标准方程;
(2)证明:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是椭圆上的动点,为椭圆的两个焦点,是坐标原点,若的角平分线上一点,且,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B为椭圆的左、右顶点,C(0,b),直线与X轴交于点D,与直线AC交于点P,且BP平分,则此椭圆的离心率为
A、  
B、  
C、  
D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为.点与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于两点,设直线的斜率分别为,若       ,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面上的动点P(xy)及两定点A(-2,0),B(2,0),直线PAPB的斜率分别是k1k2,且k1·k2=-.
(1)求动点P的轨迹C的方程;
(2)已知直线lykxm与曲线C交于MN两点,且直线BMBN的斜率都存在,并满足kBM·kBN=-,求证:直线l过原点.

查看答案和解析>>

同步练习册答案