精英家教网 > 高中数学 > 题目详情
已知sinα=
5
5
,cos(α-β)=
4
5
π
2
<β<α<π.
(1)求cos(
6
-2α)的值;
(2)求sinβ的值.
考点:两角和与差的余弦函数,同角三角函数间的基本关系
专题:三角函数的求值
分析:(1)由二倍角公式可得cos2α,进而可得sin2α,代入两角差的余弦公式可得;
(2)由角的范围和同角三角函数的基本关系可得cosα和sin(α-β),而sinβ=sin[α-(α-β)],展开代值计算即可.
解答: 解:(1)∵
π
2
<α<π,sinα=
5
5
2
2

4
<α<π,∴
2
<2α<2π,
∴cos2α=1-2sin2α=
3
5

∴sin2α=-
1-cos2α
=-
4
5

∴cos(
6
-2α)=-
3
2
cos2α+
1
2
sin2α
=-
3
3
+4
10

(2)∵
π
2
<β<α<π,∴0<α-β
π
2

又sinα=
5
5
,cos(α-β)=
4
5

∴cosα=-
1-sin2α
=-
2
5
5

sin(α-β)=
1-cos2(α-β)
=
3
5

∴sinβ=sin[α-(α-β)]
=sinαcos(α-β)-cosαsin(α-β)
=
5
5
×
4
5
+
2
5
5
×
3
5
=
2
5
5
点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=alnx+
1
2x
+
3
2
x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线斜率为2,
(1)求a的值;
(2)求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{An}满足An+1=A
 
2
n
,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=9,点{an,an+1}在函数f(x)=x2+2x的图象上,其中n为正整数.
(Ⅰ)证明数列{an+1}是“平方递推数列”,且数列{lg(an+1)}为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项积为Tn,即Tn=(a1+1)(a2+1)…(an+1),求lgTn
(Ⅲ)在(Ⅱ)的条件下,记bn=
lgTn
lg(an+1)
,求数列{bn}的前n项和Sn,并求使Sn>2014的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市举办促销活动:购物额在200元及以内不予优惠,在200-500元之间可优惠10%,超出500元之后,超出部分优惠20%,且原优惠条件不变.
(1)写出顾客购物额与应付金额之间的关系式;
(2)画出程序框图,要求输入购物额能后输出实付货款.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年第三季度,国家电网决定对城镇居民用电计费标准作出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图,如图所示.
(1)求该小区居民用电量的中位数与平均数;
(2)本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;
(3)利用分层抽样的方法从该小区内选出5位居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为其内角A,B,C的对边,且cos(B-C)-2sinBsinC=-
1
2

(Ⅰ)求角A的大小;
(Ⅱ)若a=3,sin
B
2
=
1
3
,求边b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干预赛成绩中随机抽取8次,记录如下:
81 79 88 93 84
92 75 83 90 85
分别计算两个样本的平均数
.
x
和方差S2,并根据计算结果估计选派哪位学生参加数学竞赛比较合适.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(1+2x)n的展开式中只有第七项的二项式系数最大,则2n+4除以7的余数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,下列五个正方体图形中,I是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出I垂直于平面MNP的图形的序号是
 

查看答案和解析>>

同步练习册答案