精英家教网 > 高中数学 > 题目详情
若数列{An}满足An+1=A
 
2
n
,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=9,点{an,an+1}在函数f(x)=x2+2x的图象上,其中n为正整数.
(Ⅰ)证明数列{an+1}是“平方递推数列”,且数列{lg(an+1)}为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项积为Tn,即Tn=(a1+1)(a2+1)…(an+1),求lgTn
(Ⅲ)在(Ⅱ)的条件下,记bn=
lgTn
lg(an+1)
,求数列{bn}的前n项和Sn,并求使Sn>2014的n的最小值.
考点:数列与不等式的综合,等比关系的确定,数列的求和
专题:等差数列与等比数列
分析:(I)由已知条件推导出an+1=
a
2
n
+2an
,由此能证明{an+1}是“平方递推数列”,由lg(an+1+1)=2lg(an+1),能证明{lg(an+1)}是以lg(a1+1)为首项,2为公比的等比数列.
(II)解:由(I)知lg(an+1)=2n-1,由此能求出lgTn的值.
(III)由bn=
lgTn
lg(an+1)
=
2n-1
2n-1
=2-(
1
2
)n-1
,利用分组求和法能求出数列{bn}的前n项和Sn,并求出使Sn>2014的n的最小值.
解答: (I)证明:由题意得:an+1=
a
2
n
+2an

即 an+1+1=(an+1)2
则{an+1}是“平方递推数列”,…(2分)
又有lg(an+1+1)=2lg(an+1),
得{lg(an+1)}是以lg(a1+1)为首项,2为公比的等比数列.…(4分)
(II)解:由(I)知lg(an+1)=lg(a1+1)•2n-1=2n-1,…(5分)
∴lgTn=lg(a1+1)(a2+1)…(an+1)
=lg(a1+1)+lg(a2+1)+…+lg(an+1)
=
1-2n
1-2
=2n-1.…(8分)
(III)解:bn=
lgTn
lg(an+1)
=
2n-1
2n-1
=2-(
1
2
)n-1
,…(9分)
Sn=2n-
1-
1
2n
1-
1
2
=2n-2+
1
2n-1
,…(10分)
又Sn>2014,即2n-2+
1
2n-1
>2014
n+
1
2n
>1008

又 0<
1
2n
<1

∴nmin=1008.…(13分)
点评:本题考查平方递推数列的证明,考查等比数列的证明,考查数列的前n项和的求法及应用,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC=
1
2
AD
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出E的位置并证明;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个定点A1(-2,0),A2(2,0),动点M满足直线MA1与MA2的斜率之积是定值
m
4
(m∈R,m≠0).
(1)求动点M的轨迹方程,并指出随m变化时方程所表示的曲线的形状;
(2)若m=-3,已知点A(1,t)(t>0)是轨迹M上的定点,E,F是动点M的轨迹上的两个动点且E,F,A不共线,如果直线AE的斜率kAE与直线AF的斜率kAF满足kAE+kAF=0,试探究直线EF的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a=3
3
,c=2,B=60°,则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C通过不同三点M(m,0),N(2,0),R(0,1),且直线CM斜率为-1,
(Ⅰ)试求圆C的方程;
(Ⅱ)若Q是x轴上的动点,QA,QB分别切圆C于A,B两点,
(1)求证:直线AB恒过一定点;
(2)求
QA
QB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}(an>0,n∈N*)中,公比q∈(0,1),a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn
①当n为何值时,
S1
1
+
S2
2
+…+
Sn
n
有最大值,并求出最大值;
②当n≥2时,比较Sn与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
5
,cos(α-β)=
4
5
π
2
<β<α<π.
(1)求cos(
6
-2α)的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的内接正方体的棱长为1,则该球的表面积为
 

查看答案和解析>>

同步练习册答案