精英家教网 > 高中数学 > 题目详情
已知数列的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通项公式;
(2)令Tn Sn,是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求m的值;若不存在,说明理由.
(1)an=2n.(2)m=8或m=9
(1)令n=1,由a1=2及nan1=Sn+n(n+1),①得a2=4,故a2-a1=2,
当n≥2时,有(n-1)an=Sn1+n(n-1),②
①-②,得nan1-(n-1)an=an+2n.整理得an1-an=2(n≥2).
当n=1时,a2-a1=2,所以数列{an}是以2为首项,以2为公差的等差数列,
故an=2+(n-1)×2=2n.
(2)由(1)得Sn=n(n+1),所以Tn (n2+n).
故Tn1 [(n+1)2+(n+1)],令 
 
解得8≤n≤9.故T1<T2<…<T8=T9>T10>T11>…
故存在正整数m对一切正整数n,总有Tn≤Tm
此时m=8或m=9
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知各项均为正数的数列{an}的前n项的乘积Tn(n∈N*),bn=log2an,则数列{bn}的前n项和Sn取最大时,n=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.
(1)求Sn
(2)这个数列的前多少项的和最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.
(1)求首项a1和公差d的值;
(2)若Sn=100,求n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}的前n项和为Sn,满足log2(1+Sn)=n+1,则{an}的通项公式为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设正项等差数列{an}的前2011项和等于2011,则的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{n(n+4) n}中的最大项是第k项,则k=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在数列中,已知,记为数列的前项和,则       .

查看答案和解析>>

同步练习册答案