精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=alnx-x+1,g(x)=-x2+(a+1)x+1,若对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,求实数a的取值范围.

分析 不等式可化为a(lnx-x)≥-x2+2x,根据条件可知lnx-x<0,可得a≤$\frac{{x}^{2}-2x}{x-lnx}$,把恒成立问题转换为最值问题,只需求出右式的最小值即可,
利用构造函数,通过导函数求出函数的单调性,确定函数的最值.

解答 解:对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,
∴alnx-x+1≥-x2+(a+1)x+1,
∴a(lnx-x)≥-x2+2x,
∵x∈[1,e],
∴lnx<1<x,
∴a≤$\frac{{x}^{2}-2x}{x-lnx}$,
设t(x)=$\frac{{x}^{2}-2x}{x-lnx}$,x∈[1,e],
求导,得t′(x)=
$\frac{(x-1)(x+2-lnx)}{(x-lnx)^{2}}$,
∵x∈[1,e],x-1≥0,lnx≤1,x+2-lnx>0,
从而t′(x)≥0,t(x)在[1,e]上为增函数.
所以t(x)min=t(1)=-1,所以a≤-1.
故答案为a≤-1.

点评 考查了恒成立问题的转换思想和利用导函数判断函数的单调性,根据单调性求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在三棱锥A-BCD中,点A在BD上的射影为O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)若E是AC的中点,求直线BE和平面BCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,四面体ABCD中,AB=DC=1,BD=$\sqrt{2}$,AD=BC=$\sqrt{3}$,二面角A-BD-C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x+2y-1=0垂直,则双曲线的离心率等于(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin(x+$\frac{π}{6}$)cos(x-$\frac{π}{6}$),x∈R
(1)求f(x)的单调递增区间;
(2)设函数g(x)=f(x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两家快餐店对某日7个时段光顺的客人人数进行统计并绘制茎叶图如图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.
(1)求a,b的值.并计算乙数据的方差;
(2)现从甲、乙两组数据中随机各选一个数分别记为m,n.并进行对比分析,有放回的选取2次,记m>n的次数为X.求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m,n∈R,则“mn>0”是“一次函数y=$\frac{m}{n}x$+$\frac{1}{n}$的图象不经过第二象限”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记样本x1,x2,…,xm的平均数为$\overline{x}$,样本y1,y2,…,yn的平均数为$\overline{y}$($\overline{x}$≠$\overline{y}$),若样本x1,x2,…,xm,y1,y2,…,yn的平均数为$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,则$\frac{m}{n}$的值为(  )
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知非常数数列{an}满足a1=1,an+12-3an+1an+2an2=0(n∈N*);数列{bn}满足$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$=n2(n∈N*
(1)求数列{an}和{bn}的通项公式an,bn
(2)令cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和.

查看答案和解析>>

同步练习册答案