精英家教网 > 高中数学 > 题目详情

【题目】如图,在几何体ABDCE中,AB=AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,AE=MC.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

【答案】证明:(1)∵AB=AD,M为线段BD的中点,∴AM⊥BD.
∵AE⊥平面ABD,MC∥AE,∴MC⊥平面ABD.
∴MC⊥AM,∴AM⊥平面CBD.
又MC∥AE,MC=AE,∴四边形AMCE为平行四边形,
∴EC∥AM,∴EC⊥平面CBD,
∴平面BCD⊥平面CDE.
(2)∵M为BD中点,N为ED中点,
∴MN∥BE
由(1)知,EC∥AM且AM∩MN=M,BE∩EC=E,
∴平面AMN∥平面BEC.
【解析】(1)先证明AM⊥BD,MC⊥AM,从而AM⊥平面CBD,再由EC⊥平面CBD,能证明平面BCD⊥平面CDE.
(2)由三角形中位线定理得MN∥BE,再由EC∥AM,能证明平面AMN∥平面BEC.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握直线与平面垂直的性质(垂直于同一个平面的两条直线平行)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中, 为底面的对角线, 的中点.

(1)求证:

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与y轴的正半轴相交于点M,且椭圆E上相异两点A、B满足直线MA,MB的斜率之积为

(Ⅰ)证明直线AB恒过定点,并求定点的坐标;

(Ⅱ)求三角形ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,点M为AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P、Q可以重合),则MP+PQ的最小值为(  )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点为 的中点.求:

(1) 所在直线的方程;

(2) 边上中线所在直线的方程;

(3) 边上的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=|x+1|+|x-1|,不等式fx<4的解集为M.

1M.

2a,bM,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在 的数据).

(Ⅰ)求样本容量和频率分布直方图中的 的值;

(Ⅱ)分数在的学生设为一等奖,获奖学金500元;分数在的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在[0,+∞)上递增,=0,已知g(x)=﹣f(|x|),满足的x的取值范围是(  )
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

同步练习册答案