精英家教网 > 高中数学 > 题目详情

【题目】已知fx=|x+1|+|x-1|,不等式fx<4的解集为M.

1M.

2a,bM,证明:2|a+b|<|4+ab|.

【答案】1M=-2,2) (2见解析

【解析】

试题分析:1分区间去掉绝对值符号解不等式即可。2利用平方作差比较法证明即可。

试题解析:1

x<-1,-2x<4,-2<x<-1.

-1x1,fx=2<4;

x>1,2x<4,1<x<2.

所以M=-2,2.

2a,bM,-2<a<2,-2<b<2,

4a+b2-4+ab2

=4a2+2ab+b2-16+8ab+a2b2

=a2-4)(4-b2<0.

4a+b2<4+ab2.

2|a+b|<|4+ab|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

(Ⅰ)求频率分布表中的值,并补全频率分布直方图;

(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在内的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的中位数(精确到0.1)、众数、平均数;

(2)用分层抽样的方法抽取一个容量为20的样本,求各分数段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABDCE中,AB=AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,AE=MC.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆柱的轴,CD为底面直径,E为底面圆周上一点,AB=1,CD=2,CE=DE.
求(1)三棱锥A﹣CDE的全面积;
(2)点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟造一座平面为长方形,面积为三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为中间两道隔墙的造价为,池底的造价为,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在直线方程为 边上的高所在直线方程为. 

(1)求点的坐标;

(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是一个几何体的直观图和三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).

(1)求四棱锥P-ABCD的体积;

(2)若G为BC上的动点,求证:AEPG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列项和

查看答案和解析>>

同步练习册答案