精英家教网 > 高中数学 > 题目详情

【题目】为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在 的数据).

(Ⅰ)求样本容量和频率分布直方图中的 的值;

(Ⅱ)分数在的学生设为一等奖,获奖学金500元;分数在的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

【答案】(Ⅰ); (Ⅱ).

【解析】试题分析:

(Ⅰ)利用频率的定义及上有8个分数,可得样本总容量,进而计算出

(Ⅱ)剩下的女生中,一等奖1人,编号为,二等奖4人,编号为 .设事件为从剩下的女生任取三人,用列举法可得事件的总数及奖学金之和大于600的事件个数,从而计算出概率.

试题解析:

(Ⅰ)有题意可知,样本容量

(Ⅱ)剩下的女生中,一等奖1人,编号为,二等奖4人,编号为 .设事件为从剩下的女生任取三人,奖学金之和大于600,则全部的基本事件为 ,共10个,

符合事件的基本事件有 ,共6个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,且两坐标系有相同的长度单位.已知点的极坐标为 是曲线 上任意一点,点满足,设点的轨迹为曲线.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若过点的直线的参数方程为参数),且直线与曲线交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABDCE中,AB=AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,AE=MC.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟造一座平面为长方形,面积为三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为中间两道隔墙的造价为,池底的造价为,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在直线方程为 边上的高所在直线方程为. 

(1)求点的坐标;

(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是直线上任意一点,过,线段的垂直平分线交于点.

(Ⅰ)求点的轨迹对应的方程;

(Ⅱ)过点的直线与点的轨迹相交于两点,( 点在轴上方),点关于轴的对称点为,且,求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是一个几何体的直观图和三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).

(1)求四棱锥P-ABCD的体积;

(2)若G为BC上的动点,求证:AEPG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(

不及格

合计

很少使用手机

经常使用手机

合计

(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为 ,若,则此二人适合结为学习上互帮互助的“师徒”,记为两人中解决此题的人数,若,问两人是否适合结为“师徒”?

参考公式及数据: ,其中.

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的顶点P在底面ABCD上的投影恰好是A,其正视图与侧视图都是腰长为a的等腰直角三角形.则在四棱锥P﹣ABCD的任意两个顶点的连线中,互相垂直的异面直线共有 对.

查看答案和解析>>

同步练习册答案