精英家教网 > 高中数学 > 题目详情

【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH;

(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.

【答案】见解析

【解析】解:(1)点F,G,H的位置如图所示.

(2)证明:连接BD,设O为BD的中点,连接OM,OH,AC,BH,MN。

∵M,N分别是BC,GH的中点,

∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,

∴OM∥NH,OM=NH,

则四边形MNHO是平行四边形,∴MN∥OH,

又∵MN平面BDH,OH平面BDH,

∴MN∥平面BDH。

(3)由(2)知OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,

体积比等于底面积之比,即3∶1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】东亚运动会将于2013106日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.

(1)根据以上数据完成以下2×2列联表:

喜爱运动

不喜爱运动

总计

10

16

6

14

总计

30

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?

(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?

参考公式:K2,其中

nabcd.

参考数据:

P(K2k)

0.40

0.25

0.10

0.010

k

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:

(1)由以上统计数据填下面列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;

(2)若对年龄在的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求证:EG⊥DF;

(2)求BE与平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如下表所示.

时间/天

1

3

6

10

36

……

日销售量

/件

94

90

84

76

24

……

未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式为 ,且为整数),后20天每天的价格(元/件)与时间(天)的函数关系式为,且为整数).

(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据(件)与 (天)的关系式;

(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?

(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠元利润给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)求曲线的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.

(1)求M的轨迹方程;

(2)当|OP|=|OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的最小值

(2)记的最小值为,已知函数,若对于任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案