分析 令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x,从而可证明f(x)-g(x)≥3,从而解得.
解答 解:令f(x)-g(x)=x+ex-a-1n(x+2)+4ea-x,
令y=x-ln(x+2),y′=1-$\frac{1}{x+2}$=$\frac{x+1}{x+2}$,
故y=x-ln(x+2)在(-2,-1)上是减函数,(-1,+∞)上是增函数,
故当x=-1时,y有最小值-1-0=-1,
而ex-a+4ea-x≥4,
(当且仅当ex-a=4ea-x,即x=a+ln2时,等号成立);
故f(x)-g(x)≥3(当且仅当等号同时成立时,等号成立);
故x=a+ln2=-1,
即a=-1-ln2.
故答案为:-1-ln2.
点评 本题考查了导数的综合应用及基本不等式的应用,同时考查了方程的根与函数的零点的关系应用.
科目:高中数学 来源: 题型:选择题
| A. | $[-\frac{3}{4},0]$ | B. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | C. | [-1,1] | D. | $[-\sqrt{3},\sqrt{3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | B. | -1<a<0 | C. | a<0 | D. | 0<a<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{4-π}{8}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com