精英家教网 > 高中数学 > 题目详情
1.在区间[0,2]上任取两个实数a,b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点的概率是(  )
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

分析 结合一元二次函数的性质求出函数在区间(-1,1)没有零点的等价条件,利用几何概型的概率公式即可得到结论.

解答 解:在区间[0,2]上任取两个数a,b,
则$\left\{\begin{array}{l}{0≤a≤2}\\{0≤a≤2}\end{array}\right.$,对应的平面区域为边长为2的正方形,面积为2×2=4,
∵0≤a≤2,∴抛物线的对称轴为x=-$\frac{a}{2}$∈[-1,0]?[-1,1),
则当x=-$\frac{a}{2}$时,函数取得最小值,
∵0≤b≤2,∴f(0)=1-$\frac{1}{4}$b2∈[0,1],即当0≤x<1上f(x)>0,
∴要使函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点,
则函数的最小值$\frac{1}{4}$(4×1×(1-b2)-a2=$\frac{1}{4}$(4-a2-b2)>0,
即a2+b2<4,
作出不等式对应的平面区域如图:(阴影部分),
对应的面积S=$\frac{1}{4}π$×22=π,
则对应的概率P=$\frac{π}{4}$,
故选:D.

点评 本题主要考查几何概型的概率计算,根据函数没有零点的等价条件求出a,b的取值范围是解决本题的关键.利用数形结合和线性规划是解决本题的突破.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x+ex-a,g(x)=1n(x+2)-4ea-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为-1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+b}$(a>0,b>1),满足:f(1)=1,且f(x)在R上有最大值$\frac{3\sqrt{2}}{4}$.
(I)求f(x)的解析式;
(Ⅱ)当x∈[1,2]时,不等式f(x)≤$\frac{3m}{({x}^{2}+2)|x-m|}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的导函数为f′(x),若?x∈(0,+∞),都有xf′(x)<2f(x)成立,则(  )
A.2f($\sqrt{3}$)>3f($\sqrt{2}$)B.2f(1)<3f($\sqrt{2}$)C.4f($\sqrt{3}$)<3f(2)D.4f(1)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的结果为(  )
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数y=3x2-12x+18,求该函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=$\frac{sinθ}{co{s}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,则边BC的长为(  )
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴长为4,离心率为$\frac{{\sqrt{6}}}{3}$.
(I)求椭圆C的方程;
(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.

查看答案和解析>>

同步练习册答案