精英家教网 > 高中数学 > 题目详情
10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,则边BC的长为(  )
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

分析 由cosA=$\frac{1}{3}$,A∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$.由3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,可得3b=2c,$\frac{1}{2}bc×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,再利用余弦定理可得:a2=b2+c2-2bccosA.

解答 解:∵cosA=$\frac{1}{3}$,A∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∵3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,
∴3b=2c,$\frac{1}{2}bc×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$,
解得b=2,c=3.
∴a2=b2+c2-2bccosA=22+32-2×2×3×$\frac{1}{3}$=9,
解得a=3.
故选:B.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知一个四棱锥的三视图如图所示,则此四棱锥的体积为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在区间[0,2]上任取两个实数a,b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在区间(-1,1)没有零点的概率是(  )
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{sin(3π-α)tan(α+π)cot(-α-π)}{cos(π-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.sin150°-2cos120°+3tan2390°-cos2225°=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{AB}$=(2,-1),$\overrightarrow{CB}$=(-2,3),则|$\overrightarrow{AC}$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:($\overrightarrow{AD}$+$\overrightarrow{MB}$)+($\overrightarrow{BC}$+$\overrightarrow{CM}$)=$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.同时掷两颗骰子,向上点数之和小于5的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{(sinx-cosx)sin2x}{sinx}$.
(Ⅰ)求f(x)的定义域及最小正周期T;
(Ⅱ)求使f(x)≥0时,x的取值范围;
(Ⅲ)是否存在最小正实数m,使得函数f(x)的图象向左平移m个单位后成为偶函数?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案