精英家教网 > 高中数学 > 题目详情
5.sin150°-2cos120°+3tan2390°-cos2225°=$\frac{3}{2}$.

分析 利用诱导公式、特殊角的三角函数值即可得出.

解答 解:原式=sin30°+2cos60°+3tan230°-cos245°
=$\frac{1}{2}+2×\frac{1}{2}$+$3×(\frac{\sqrt{3}}{3})^{2}$-$(\frac{\sqrt{2}}{2})^{2}$
=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了诱导公式、特殊角的三角函数值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知命题p:“?x>-1,a≤x+$\frac{1}{x+1}$恒成立”;,命题q:“函数f(x)=$\frac{1}{3}$x3+ax2+2ax+1在R上存在极大值和极小值”,若命题“p且q”是假命题,“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的结果为(  )
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=$\frac{sinθ}{co{s}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列各三角函数的值:
(1)sin1290°;
(2)tan(-1665°);
(3)cos(-$\frac{8}{3}$π);
(4)cot(-$\frac{19}{6}π$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面积为2$\sqrt{2}$,则边BC的长为(  )
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某单位对职员中的老年、中年、青年进行健康状况凋查,其中老年、中年、青年职员的人数之比为k:5:3,现用分层抽样的方法抽出一个容量为120的样本,已知在老年职员中抽取了24人,则在青年职员中抽取的人数为36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上的点$M(2,\sqrt{2})$到两焦点的距离之和等于$4\sqrt{2}$.
(Ⅰ)求椭圆G的方程;
(Ⅱ)经过椭圆G右焦点F的直线m(不经过点M)与椭圆交于A,B两点,与直线l:x=4相交于C点,记直线MA,MB,MC的斜率分别为k1,k2,k3.求证:$\frac{{{k_1}+{k_2}}}{k_3}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一对夫妇有两个孩子,已知其中一个孩子是女孩,那么另一个孩子也是女孩的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案