精英家教网 > 高中数学 > 题目详情
3.(1)已知tanα=-$\frac{1}{2}$,求$\frac{1}{{{{sin}^2}α-sinαcosα-2{{cos}^2}α}}$的值;
(2)求函数y=$\sqrt{2cosx-1}$的定义域.

分析 (1)由条件利用同角三角函数的基本关系,求得要求式子的值.
(2)由函数的定义域可得求得cosx≥$\frac{1}{2}$,由此求得x的范围,即为函数的定义域.

解答 解:(1)∵已知tanα=-$\frac{1}{2}$,∴$\frac{1}{{{{sin}^2}α-sinαcosα-2{{cos}^2}α}}$=$\frac{{sin}^{2}α{+cos}^{2}α}{{sin}^{2}α-sinαcosα-{2cos}^{2}α}$=$\frac{{tan}^{2}α+1}{{tan}^{2}α-tanα-2}$=-1.
(2)对于函数y=$\sqrt{2cosx-1}$,由2cosx-1≥0,求得cosx≥$\frac{1}{2}$,∴2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{π}{3}$,
故函数的定义域为{x|2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{π}{3}$,k∈Z}.

点评 本题主要考查同角三角函数的基本关系的应用,三角不等式的解法,求函数的定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若关于x的不等式|x+3|-|x-1|>a2-3a的解集不空,则实数a的范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知$\overrightarrow{BA}$=(2,4,0),$\overrightarrow{BC}$=(-1,3,0),则∠ABC=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.结合下面的算法:
第一步,输入x
第二步,判断x是否小于0,若是则输出x+2,结束程序;否则执行第三步
第三步,输出x-1,结束程序;
当输入的x的值分别是-1,0,1时,输出的结果分别为1,-1,0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$,求点A(2,$\frac{π}{6}$)到这条直线的距离$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在直角坐标系xOy中,直线l的参数方程为是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)判断直线l与曲线C的位置关系;
(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,且E、F分别是AC、BC的中点.求:
(1)直线AB边上的高所在直线的方程.
(2)直线l所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知条件p:(1-x)(x+1)>0,条件q:-1<x≤1,则¬p是¬q的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用分析法证明问题时是从要证明的结论出发,逐步寻求使它成立的(  )
A.充要条件B.充分条件
C.必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案