分析 利用向量夹角公式即可得出.
解答 解:∵cos∠ABC=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}$=$\frac{-2+12+0}{\sqrt{{2}^{2}+{4}^{2}}\sqrt{(-1)^{2}+{3}^{2}}}$=$\frac{\sqrt{2}}{2}$,
∠ABC∈(0,π),
∴∠ABC=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 本题考查了向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n2-2n+1 | B. | 2n2-2n+1 | C. | 2n2+2 | D. | 2n2-n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sin(x-$\frac{π}{4}$) | B. | f(x)=-sin(x-$\frac{π}{4}$) | C. | f(x)=-cos(x+$\frac{π}{4}$) | D. | f(x)=cos(x-$\frac{π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com