分析 作DF⊥AB于F,CE⊥AB于E,设二面角C-AB-D的大小为θ,则${\overrightarrow{CD}}^{2}={\overrightarrow{CE}}^{2}+{\overrightarrow{EF}}^{2}+{\overrightarrow{FD}}^{2}$-2|$\overrightarrow{CE}$|•$|\overrightarrow{FD}|$•cosθ,由此能求出二面角C-AB-D的余弦值.
解答 解:作DF⊥AB于F,CE⊥AB于E,![]()
∵AC⊥面BCD,BD⊥面ACD,AC=CD=1,∠ABC=30°,
∴AD=$\sqrt{2}$,AB=2,BC=$\sqrt{3}$,BD=$\sqrt{2}$,
在Rt△ABC中,CE=$\frac{AC•BC}{AB}$=$\frac{1×\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
同理,DF=$\frac{AD•BD}{AB}$=$\frac{\sqrt{2}×\sqrt{2}}{2}$=1,
∴BF=$\sqrt{B{D}^{2}-D{F}^{2}}$=1,AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=$\frac{1}{2}$,
∴EF=2-1-$\frac{1}{2}=\frac{1}{2}$,
设二面角C-AB-D的大小为θ,
∵$\overrightarrow{CD}=\overrightarrow{CE}+\overrightarrow{EF}+\overrightarrow{FD}$,
∴${\overrightarrow{CD}}^{2}={\overrightarrow{CE}}^{2}+{\overrightarrow{EF}}^{2}+{\overrightarrow{FD}}^{2}$-2|$\overrightarrow{CE}$|•$|\overrightarrow{FD}|$•cosθ,
即1=$\frac{3}{4}$+1+$\frac{1}{4}$-2×$\frac{\sqrt{3}}{2}×1×cosθ$,
解得cosθ=$\frac{\sqrt{3}}{3}$.
∴二面角C-AB-D的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
| 关注 | 不关注 | 合计 | |
| 青少年人 | 15 | ||
| 中老年人 | |||
| 合计 | 50 | 50 | 100 |
| P(K2≥k0) | 0.05 | 0.01 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,1] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,0] | C. | [0,$\sqrt{6}$] | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com