精英家教网 > 高中数学 > 题目详情
7.如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD是正方形,且SA=AB=2.
(Ⅰ)若E是AB中点,F是SC的中点,求证:EF∥面SAD;
(Ⅱ)求四棱锥S-ABCD的侧面积.

分析 (Ⅰ)要证EF∥面SAD,只要证明EF平行于面内的一条直线;
(Ⅱ)关键是分别求出平面SBC,SCD的面积;首先要判断它们各自的形状.

解答 (Ⅰ)证明:因为E是AB中点,F是SC的中点,过F作FG∥CD,
则G是SD的中点,(1分)
又因为$AE\underline{\underline{∥}}\frac{1}{2}DC$,所以$FG\underline{\underline{∥}}AE$.(2分)
所以四边形AEFG是平行四边形,所以EF∥AG,(3分)
又因为EF?面SAD,AG?面SAD,所以EF∥平面SAD.(4分)
(Ⅱ)解:因为SA⊥平面ABCD,底面ABCD是正方形,
所以BC⊥AB,BC⊥SA
且AB∩SA=A,所以BC⊥平面SAB.(8分)
又因为SB?平面SAB,所以BC⊥SB.所以△SBC是直角三角形.(9分)
SB=$\sqrt{S{A}^{2}+A{B}^{2}}$=2$\sqrt{2}$,所以${S_{Rt△SBC}}=\frac{1}{2}×2×2\sqrt{2}=2\sqrt{2}$.(10分)
同理可得${S_{Rt△SDC}}=2\sqrt{2}$.(11分)又S△SAD=S△SAB=2,
所以四棱锥S-ABCD的侧面积是4+4$\sqrt{2}$.(12分)

点评 本题考查了空间线面平行、线面垂直的判定定理和性质定理的运用;关键是将线面关系转化为线线关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设命题p:?n∈N,n2>2n,则¬p为(  )
A.?n∈N,n2≤2nB.?n∈N,n2<2nC.?n∈N,n2≤2nD.?n∈N,n2<2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.x∈[$\frac{π}{4}$,$\frac{π}{2}$].
(1)求函数f(x)的单调区间和最值;
(2)若不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x2+4x-1的递增区间是(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U={x|x=kπ,k∈Z},A={x|x=2kπ,k∈Z},则∁UA={x|x=(2k-1)π,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l1:4x-3y+16=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1的距离为d1,动点P到直线l2的距离为d2,则d1+d2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂对某种产品的产量与成本的资料分析后有如下数据:
产量x(千件)2356
成本y(万元)78912
经过分析,知道产量x和成本y之间具有线性相关关系.
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)试根据(1)求出的线性回归方程,预测产量为10千件时的成本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{2-lo{g}_{2}x,x>2}\end{array}\right.$若a,b,c互不相等,且f(a)=f(b)=f(c),则ab+bc+ca的取值范围是(  )
A.(1,4)B.(2,4)C.(6,9)D.(7,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,底面为正三角形的三棱柱ABC-A1B1C1中,侧棱垂直于底面,D为线段B1C1中点.
(Ⅰ) 证明:AC1∥平面A1BD;
(Ⅱ) 在棱CC1上是否存在一点E,使得平面A1BE⊥平面A1ABB1?若存在,请找出点E所在位置,并给出证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案