精英家教网 > 高中数学 > 题目详情
12.已知直线l1:4x-3y+16=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1的距离为d1,动点P到直线l2的距离为d2,则d1+d2的最小值为4.

分析 抛物线y2=4x的焦点F(1,0),由抛物线的定义可得:|PF|=d2,可得d1+d2的最小值为点F到直线l1的距离.

解答 解:抛物线y2=4x的焦点F(1,0),
由抛物线的定义可得:|PF|=d2
∴d1+d2的最小值为点F到直线l1的距离.
∴d1+d2的最小值=$\frac{|4-0+16|}{5}$=4,
故答案为:4.

点评 本题考查了抛物线的定义及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.观察以下各式:cos6°cos54°cos66°=$\frac{1}{4}$cos18°,cos19°cos41°cos79°=$\frac{1}{4}$cos57°,cos27°cos33°cos87°=$\frac{1}{4}$cos81°.
(1)分析上述各式的共同特点,写出一个能反映一般规律的等式;
(2)证明你写出的等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1).
(Ⅰ)求函数f(x)的零点;
(Ⅱ)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,抛物线y=$\frac{1}{2}{x}^{2}$+bx+c与直线y=-2x-4交y轴于点A,交x轴于点B,抛物线与x轴的另一个交点为C,O为坐标原点
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使A,B,C,P四点构成平行四边形?存在,请求出P点坐标;若不存在,请说明理由;(3)若点M在y轴上,且∠ACB=∠OAB+∠OMB,请求出M点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD是正方形,且SA=AB=2.
(Ⅰ)若E是AB中点,F是SC的中点,求证:EF∥面SAD;
(Ⅱ)求四棱锥S-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)在其定义域(-∞,0)上是减函数,且f(1-m)<f(m-3),则实数m的取值范围是(  )
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}=(-3,2,5)$,$\overrightarrow{b}=(1,m,3)$,若$\overrightarrow{a}⊥\overrightarrow{b}$,则常数m=(  )
A.-6B.6C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.与函数y=$\frac{1}{\sqrt{x-1}}$的定义域相同的函数是(  )
A.y=$\sqrt{x-1}$B.y=2x-1C.y=$\frac{1}{x-1}$D.y=ln(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某同学在求函数y=lgx和$y=\frac{1}{x}$的图象的交点时,计算出了下表所给出的函数值,则交点的横坐标在下列哪个区间内(  )
x22.1252.252.3752.52.6252.752.8753
lgx0.3010.3270.3520.3760.3980.4190.4390.4590.477
$\frac{1}{x}$0.50.4710.4440.4210.4000.3810.3640.3480.333
A.(2.125,2,25)B.(2.75,2.875)C.(2.625,2.75)D.(2.5,2.625)

查看答案和解析>>

同步练习册答案