精英家教网 > 高中数学 > 题目详情
1.与函数y=$\frac{1}{\sqrt{x-1}}$的定义域相同的函数是(  )
A.y=$\sqrt{x-1}$B.y=2x-1C.y=$\frac{1}{x-1}$D.y=ln(x-1)

分析 求出函数y=$\frac{1}{\sqrt{x-1}}$的定义域,再分别求出选项中的函数定义域,进行判断即可.

解答 解:函数y=$\frac{1}{\sqrt{x-1}}$的定义域是(1,+∞);
对于A,函数y=$\sqrt{x-1}$的定义域是[1,+∞),与已知函数的定义域不同;
对于B,函数y=2x-1的定义域是(-∞,+∞),与已知函数的定义域不同;
对于C,函数y=$\frac{1}{x-1}$的定义域是(-∞,1)∪(1,+∞),与已知函数的定义域不同;
对于D,函数y=ln(x-1)的定义域是(1,+∞),与已知函数的定义域相同.
故选:D.

点评 本题考查了求基本初等函数定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知圆O1:x2+y2-4x+4y-41=0,圆O2:(x+1)2+(y-2)2=4,则两圆的位置关系为(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l1:4x-3y+16=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1的距离为d1,动点P到直线l2的距离为d2,则d1+d2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求$\frac{1}{a}+\frac{4}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{2-lo{g}_{2}x,x>2}\end{array}\right.$若a,b,c互不相等,且f(a)=f(b)=f(c),则ab+bc+ca的取值范围是(  )
A.(1,4)B.(2,4)C.(6,9)D.(7,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正方体ABCD-A1B1C1D1中,E、F分别为棱AB、AD的中点.
(1)求证:EF平行平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1
(3)求直线A1C与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3
(I)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.经过两点$A({-1,\sqrt{3}})$,$B({1,-\sqrt{3}})$的直线的倾斜角为(  )
A.120°B.150°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正弦函数y=sinx的图象上最高点和最低点之间的最短距离是(  )
A.2B.2$\sqrt{2}$C.$\sqrt{4+{π}^{2}}$D.2$\sqrt{1+{π}^{2}}$

查看答案和解析>>

同步练习册答案