精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1).
(Ⅰ)求函数f(x)的零点;
(Ⅱ)若函数f(x)的最小值为-4,求a的值.

分析 (Ⅰ)求出函数的定义域,化简方程,然后求函数f(x)的零点;
(Ⅱ)利用复合函数通过x的范围,结合二次函数的性质,通过函数f(x)的最小值为-4,求a的值.

解答 解:(Ⅰ)要使函数有意义:则有$\left\{\begin{array}{l}1-x>0\\ x+3>0\end{array}\right.$,解之得:-3<x<1…(2分)
函数可化为$f(x)={log_a}(1-x)(x+3)={log_a}(-{x^2}-2x+3)$
由f(x)=0,得-x2-2x+3=1
即x2+2x-2=0,$x=-1±\sqrt{3}$∵$-1±\sqrt{3}∈(-3,1)$,∴f(x)的零点是$-1±\sqrt{3}$…(5分)
(Ⅱ)函数化为:$f(x)={log_a}(1-x)(x+3)={log_a}(-{x^2}-2x+3)={log_a}[{-{{(x+1)}^2}+4}]$,
∵-3<x<1,
∴0<-(x+1)2+4≤4…(7分)
∵0<a<1,
∴${log_a}[{-{{(x+1)}^2}+4}]≥{log_a}4$
即f(x)min=loga4
由loga4=-4,得a-4=4,
∴$a={4^{-\frac{1}{4}}}=\frac{{\sqrt{2}}}{2}$…(10分)

点评 本题考查函数的最值的求法,二次函数的性质的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知全集I={1,2,3,4,5,6},集合A={3,4,5},B={1,5,6},则图中阴影部分表示的集合是(  )
A.{2,3,4}B.{2,3,4,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知ABCD-A1B1C1D1为正方体,E、F分别是AB、B1C1的中点.
(1)求证:直线EF∥平面ACC1A1
(2)求直线BC1与平面ACC1A1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆O1:x2+y2-4x+4y-41=0,圆O2:(x+1)2+(y-2)2=4,则两圆的位置关系为(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.x∈[$\frac{π}{4}$,$\frac{π}{2}$].
(1)求函数f(x)的单调区间和最值;
(2)若不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数y=4x-3•2x+3的值域为[1,7],若定义域为(-∞,0]∪[a,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x2+4x-1的递增区间是(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l1:4x-3y+16=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1的距离为d1,动点P到直线l2的距离为d2,则d1+d2的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3
(I)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案