精英家教网 > 高中数学 > 题目详情
如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射到P点.求(1)光线所经过的路程是多少;(2)直线AB关于直线2x-y-2=0的对称直线.
考点:与直线关于点、直线对称的直线方程
专题:直线与圆
分析:(1)设点P关于y轴的对称点P′,点P关于直线AB:x+y-4=0的对称点P″,由对称特点可求P′和P″的坐标,在利用入射光线上的点关于反射轴的对称点在反射光线所在的直线上,光线所经过的路程|P′P″|.
(2)AB的方程为x+y=4,在直线AB关于直线2x-y-2=0的对称直线上任意取一点M(x,y),求得A关于直线2x-y-2=0的对称点N的坐标,再把点N的坐标代入AB的方程x+y=4,化简可得结果.
解答: 解:(1)点P关于y轴的对称点P′坐标是(-2,0),设点P关于直线AB:x+y-4=0的对称点P″(a,b),
b-0
a-2
×(-1)=-1
a+2
2
+
b+0
2
-4=0
,解得
a=4
b=2
,∴光线所经过的路程|P′P″|=2
10

(2)AB的方程为x+y=4,在直线AB关于直线2x-y-2=0的对称直线上任意取一点M(x,y),
设A关于直线2x-y-2=0的对称点为N(x′,y′),
则由
y′-y
x′-x
•2=-1
2
x+x′
2
-
y+y′
2
-2=0
 求得
x′=
14-5x
3
y′=
3y-4x+4
3
,即N(
14-5x
3
3y-4x+4
3
).
再把点N的坐标代入AB的方程为x+y=4,化简可得3x-y-2=0,
即直线AB关于直线2x-y-2=0的对称直线方程为3x-y-2=0.
点评:本题考查求一个点关于直线的对称点的方法(利用垂直及中点在轴上),求一条直线关于另一条直线的对称直线的方程的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x,g(x)=lnx-2x.
(Ⅰ)若函数h(x)=f(x)+g(x)时,求函数h(x)的单调增区间;
(Ⅱ)若函数F(x)=f(x)+ag(x),求函数F(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD的对角线相交于点O,G是平行四边形ABCD所在平面外一点,且GA=GC,GB=GD,求证:GO⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函数f(x)=
a
b
+|
b
|2
(1)求函数y=f(x)的周期和对称轴方程;
(2)求函数y=f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a>0,b>0且a+b>2,求证:
1+b
a
1+a
b
中至少有一个小于2.
(2)设x>0,y>0且x+y=1,求证:(1+
1
x
)(1+
1
y
)≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第三象限的角,且f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)•tan(-α-π)
sin(-α-π)

(1)化简f(α);
(2)若cos(α-
3
2
π)=
1
5
,求f(α);
(3)若α=-
31
3
π,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:关于x的不等式x2+2ax+2>0对一切x∈R恒成立;q:函数f(x)=-(3-2a)x是减函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,anan+1=4n(n∈N*),则a2+a4+…+a2n=
 

查看答案和解析>>

同步练习册答案