精英家教网 > 高中数学 > 题目详情
已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;
(1)求a的值;
(2)求证:x=1是该函数的一条对称轴;
(3)是否存在实数b,使函数的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由.
(1)
(2)证明见解析
⑶b=4或b=0为所求.
(1)
,∴
(2)设点A(x

⑶由交点对应于方程
∴b=4或b=0为所求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知 函数f(x)=的图像关于原点对称,其中m,n为实常数。
(1)求m , n的值;
(2)试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;
(3)[理科做] 当-2≤x≤2 时,不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)若,函数是否有极值,若有则求出极值,若没有,请说明理由.
(Ⅱ)若在其定义域内为单调函数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,函数的图象与轴的交点也在函数的图象上,且在此点有公共切线.
(Ⅰ)求的值;
(Ⅱ)对任意的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明:若函数在点处可导,则函数在点处连续.
个是趋向的转化,另一个是形式(变为导数定义形式)的转化.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.函数y=(x-1)2的导数是
A.-2B.(x-1)2C.2(x-1)D.2(1-x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题




(1)求的解析式
(2)满足什么条件时,函数在区间上单调递增?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为常数),则                         

查看答案和解析>>

同步练习册答案