精英家教网 > 高中数学 > 题目详情
20.(1-2x)3的展开式中所有的二项式系数和为a,函数y=mx-2+1(m>0且m≠1)经过的定点的纵坐标为b,则${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$的展开式中x6y2的系数为(  )
A.320B.446C.482D.248

分析 根据题意求出a、b的值,再根据二项式展开式的通项公式求出r、k的值,从而得出展开式中x6y2的系数.

解答 解:根据题意,a=23=8,
b=m0+1=2,
∴${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$=(2x+y)3•(x+2y)5
其通项公式为:
Tr+1•Tk+1=$C_3^r{(2x)^{3-r}}{y^r}\;•\;C_5^k{x^{5-k}}{(2y)^k}={2^{3+k-r}}C_3^r\;•$$C_5^k{x^{8-r-k}}{y^{r+k}}$,
令r+k=2,得r=0,k=2;或r=1,k=1;或r=2,k=0;
∴展开式中x6y2的系数为:
25•${C}_{3}^{0}$•${C}_{5}^{2}$+23•${C}_{3}^{1}$•${C}_{5}^{1}$+2•${C}_{3}^{2}$•${C}_{5}^{0}$=320+120+6=446.
故选:B.

点评 本题主要考查了二项展开式的通项在求解特定项中的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(y,-4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则4x+2y的最小值为(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{6}}{3}$,则tan(π+α)等于(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}满足:an-1+an+1>2an(n>1,n∈N*),给出下述命题:
①若数列{an}满足:a2>a1,则an>an-1(n>1,n∈N*)成立;
②存在常数c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),则ap+aq>am+an
④存在常数d,使得an>a1+(n-1)d(n∈N*)都成立.
上述命题正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)的子集个数为(  )
A.1B.3C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某次数学考试试题中共有10道选择题,每道选择题都有4个选项,其中仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.”某考生每道题都给了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:
(Ⅰ)得45分的概率;
(Ⅱ)所得分数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率.祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后的第7位,即3.1415926到3.1415927之间,数列{an}是公差大于0的等差数列,其前三项是“31415926”中连续的三个数,数列{bn}是等比数列,其公比大于1的正整数且前三项是“31415926”中的三个数,且a3=b3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}{b}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a,b>0)$,过x轴上点P的直线与双曲线的右支交于M,N两点(M在第一象限),直线MO交双曲线左支于点Q(O为坐标原点),连接QN.若∠MPO=60°,∠MNQ=30°,则该双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案