精英家教网 > 高中数学 > 题目详情
12.函数$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的图象大致是(  )
A.B.C.D.

分析 判断函数的奇偶性,并计算特殊值即可得出答案.

解答 解:令f(x)=$\frac{cos6x}{{2}^{x}-{2}^{-x}}$,则f(-x)=$\frac{cos6x}{{2}^{-x}-{2}^{x}}$=-f(x),
∴f(x)是奇函数,图象关于原点对称,排除C,D;
令f(x)=0得cos6x=0,∴6x=$\frac{π}{2}$+kπ,x=$\frac{π}{12}$+$\frac{kπ}{6}$,k∈Z,
∴f(x)的最小正零点为$\frac{π}{12}$,
当x∈(0,$\frac{π}{12}$)时,2x>1>2-x,cos6x>0,∴f(x)>0,排除B,
故选A.

点评 本题考查了函数奇偶性的判断,函数值的计算,余弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知各项均为正数的等比数列{an},前n项和为Sn,${a_2}{a_8}={a_m}^2=1024$且a1=2,则Sm=62.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若(a2+2b3n的展开式中有一项为ma4b12,则m=240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-2x)3的展开式中所有的二项式系数和为a,函数y=mx-2+1(m>0且m≠1)经过的定点的纵坐标为b,则${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$的展开式中x6y2的系数为(  )
A.320B.446C.482D.248

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}各项均为正数,a1=$\frac{1}{2}$,对任意的n∈N*,有an+1=an+$\frac{1}{2016}$an2,若an>1,则n的最小值为2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数变量x、y满足约束条件|x+y|+|x-2y|≤3,目标函数z=ax-y+1(a∈R).有如下结论:①可行域外轮廓为矩形;②可行域面积为3;③a=1时,z的最小值为-1;④a=2时,使得z取最大值的最优解有无数组;则下列组合中全部正确的为(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足f(x)=-f(x-1),则函数f(x)的图象不可能发生的情形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全如图2所示的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);
(Ⅱ)在该月份中任取两天,求空气质量至少有一天为优或良的概率;
(Ⅲ)如果该市对环境进行治理,治理后经统计,每天的空气质量指数近似满足X~N(75,552),则治理后的空气质量指数均值大约下降了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号第一组第二组第二组第四组
分组[70,80)[80,90)[90,100)[100,110)
频数642220
频率0.060.040.220.20
组号第五组第六组第七组第八组
分组[110,120)[120,130)[130,140)[140,150]
频数18a105
频率b0.150.100.05
(1)若频数的总和为c,试求a,b,c的值;
(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量ξ,求随机变量ξ的分布列和数学期望;
(3)估计该校本次考试的数学平均分.

查看答案和解析>>

同步练习册答案