精英家教网 > 高中数学 > 题目详情
2.已知各项均为正数的等比数列{an},前n项和为Sn,${a_2}{a_8}={a_m}^2=1024$且a1=2,则Sm=62.

分析 ${a_2}{a_8}={a_m}^2=1024$,an>0,可得am=a5=32,a1=2,可得公比q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$,再利用求和公式即可得出.

解答 解:∵${a_2}{a_8}={a_m}^2=1024$,an>0,
∴am=a5=32,a1=2,
∴公比q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$=2,
∴S5=$\frac{2({2}^{5}-1)}{2-1}$=62.
故答案为:62.

点评 本题考查了等比数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年四川省高二上学期期中考数学试卷(解析版) 题型:选择题

在圆内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$-2$\overrightarrow{b}$=(-7,-2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(y,-4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则4x+2y的最小值为(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知O是坐标原点,双曲线${x^2}-\frac{y^2}{n^2}=1({n>0})$的两条渐近线分别为l1,l2,右焦点为F,以OF为直径的圆交l1于异于原点O的点A,若点B在l2上,且$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,则双曲线的方程为(  )
A.${x^2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{5}=1$D.${x^2}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中的a2、a4030是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的两个极值点,则log2(a2016)=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影为-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{6}}{3}$,则tan(π+α)等于(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案