| A. | ${x^2}-\frac{y^2}{3}=1$ | B. | ${x^2}-\frac{y^2}{2}=1$ | C. | ${x^2}-\frac{y^2}{5}=1$ | D. | ${x^2}-\frac{y^2}{6}=1$ |
分析 求出双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的方程和圆的方程,联立方程求出A,B的坐标,结合点B在渐近线y=-$\frac{b}{a}$x上,建立方程关系求得A的坐标,设B(m,n),运用向量的坐标关系,结合B在渐近线上,可得a,c的关系,再由a=1,即可得到c,b,进而得到所求双曲线的方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程
l1,
y=$\frac{b}{a}$x,l2,y=-$\frac{b}{a}$x,
F(c,0),
圆的方程为(x-$\frac{c}{2}$)2+y2=$\frac{{c}^{2}}{4}$,将y=$\frac{b}{a}$x代入圆的方程,
得(x-$\frac{c}{2}$)2+($\frac{b}{a}$x)2=$\frac{{c}^{2}}{4}$,
即$\frac{{c}^{2}}{{a}^{2}}$x2=cx,则x=0或x=$\frac{{a}^{2}}{c}$,
当x=$\frac{{a}^{2}}{c}$,y═$\frac{b}{a}$•$\frac{{a}^{2}}{c}$=$\frac{ab}{c}$,即A($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
设B(m,n),则n=-$\frac{b}{a}$•m,
则$\overrightarrow{BA}$=($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n),$\overrightarrow{AF}$=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
∵$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,
∴$\frac{1}{2}$($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n)=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
则$\frac{{a}^{2}}{c}$-m=2(c-$\frac{{a}^{2}}{c}$),$\frac{ab}{c}$-n=2•(-$\frac{ab}{c}$),
即m=$\frac{3{a}^{2}}{c}$-2c,n=$\frac{3ab}{c}$,
即$\frac{3ab}{c}$=-$\frac{b}{a}$•($\frac{3{a}^{2}}{c}$-2c)=-$\frac{3ab}{c}$+$\frac{2bc}{a}$,
即$\frac{6ab}{c}$=$\frac{2bc}{a}$,
则c2=3a2,
由双曲线${x^2}-\frac{y^2}{n^2}=1({n>0})$可得a=1,c=$\sqrt{3}$,b=n=$\sqrt{3-1}$=$\sqrt{2}$.
则双曲线的方程为x2-$\frac{{y}^{2}}{2}$=1.
故选:B.
点评 本题主要考查双曲线方程的求法,注意运用渐近线方程和圆的方程联立,根据条件建立方程关系,求出交点坐标,转化为a,b,c的关系是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{\frac{{6\sqrt{5}}}{5},6}]$ | B. | $[{\frac{{2\sqrt{5}}}{5},6}]$ | C. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{4,6}]$ | D. | $\left\{2\right\}∪[{\frac{{6\sqrt{5}}}{5},6}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com